<|lI!

z/NM

CPl Communications User’s Guide

version 0 release 1

SC24-6180-00






<|lI!

z/NM

CPl Communications User’s Guide

version 0 release 1

SC24-6180-00



Note
FBefore using this information and the product it supports, read the general information under [‘Notices” on page 225.

This edition applies to version 6, release 1, modification 0 of IBM z/VM (product number 5741-A07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC24-6085-00.

© Copyright International Business Machines Corporation 1991, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . L . L o Lo i
Tables . . . . . . . . . . . . . 0L L0 Lo L s L
About This Document . . . . . . . . . . . . . . . . . . . . . .x
Intended Audience . . . T (
Where to Find More Informat|on T (
How to Send Your CommentstolBM . . . . . . . . . . . . . . . Xii
If You Have a Technical Problem . . . . . . . . . . . . . . . . . . Xxi
Chapter 1. Introduction. 1
A Few Words about Our Format and Programs 1
Error Handling 1
The Programming Language Used for Th|s Book -1
Before You Start. . Coe .2
Setting Up the User IDs . .2
Conventions Used in This Book . .2
Pseudonyms . . 3
Visual Cues . 3
CPI Communications Terms and Concepts for z/VM .4
Program Partners, Communications, and Resources .4
Like Using a Two-Way Radio . .5
Type of Conversation to Be Used . 6
Program Calls. . . . 6
SAA CPI Commumcatrons CaIIs . . 6
z/NVNM Extensions to CPl Communications .7
Chapter 2. Starter Set CPl Communications Calls .9
Calls Used for Starting and Ending Conversations .9
Calls Used for Exchanging Data . . 9
Using the Starter Set Calls . I
Getting Started . . . e
Step 1. The Initialize Conversatlon (CMINIT) CaII T B
Step 2. The Allocate (CMALLC)Call . . . . . . . . . . . . . . . .17
Step 3. The Send_Data (CMSEND)Call . . . . . . . . . . . . . .20
Preparing the SERVR Virtual Machine . . . e . . . . . . . .80
Step 4. The Accept_Conversation (CMACCP) CaII . e . . . . . . . .38
Step 5. The Receive (CMRCV) Call . . . . . . .36
Step 6. Adding a Receive (CMRCV) Loop to Our Requester Program ..M
Step 7. Adding a Send_Data (CMSEND) Loop to Our Server. . . . . . . 46
Step 8. The Deallocate (CMDEAL)Call. . . . . . . . . . . . . . .50
Summary with Flow Diagram. . . . I o1
A Word about the Flow Diagrams . . . . . . . . . . . . . . . . .59
Flow Diagram for Starter Set Conversaton . . . . . . . . . . . . .59
Chapter 3. Advanced CPl Communications Calls . . . . . . . . . . .63
Overview of Advanced CPlI Communications Calls. . . . . . . . . . . .68
Calls Used for Synchronization and Control . . . . . . . . . . . . .63
Using Advanced Set Calls. . . . o
The Extract_Conversation_State (CMECS) CaII .. . . . . . . . . .65
The Prepare_To_Receive (CMPTR)Call . . . . . . . . . . . . . .70
The Set_Sync_Level (CMSSL)Call . . . . . . . . . . . . . . . .74

© Copyright IBM Corp. 1991, 2009 iii



iv

The State Table—Finding Out Where You Can Go from Here .

Confirmation Processing .
The Confirm (CMCFM) Call .
The Confirmed (CMCFMD) Call. .
The Set_Prepare_To_Receive_Type (CMSPTR) CaII
The Set_Send_Type (CMSST) Call . . .
The Set_Deallocate_Type (CMSDT) Call
The Extract_Conversation_Type (CMECT) Call
The Send_Error (CMSERR) Call . . . . . .
The Set_Conversation_Type (CMSCT) Call .
The Set_Partner_LU_Name (CMSPLN) Call.
The Set_TP_Name (CMSTPN) Call .

Overviews of Additional Advanced Calls
Extract_Mode_Name (CMEMN) Call . . .
Extract_Partner_LU_Name (CMEPLN) Call .
Extract_Sync_Level (CMESL) Call
Request_To_Send (CMRTS) Call. .
Set_Error_Direction (CMSED) Call .

Set_Fill (CMSF) Call . . . . .

Set_Log_Data (CMSLD) Call . .

Set_Mode_Name (CMSMN) Call .
Set_Return_Control (CMSRC) Call .
Set_Receive_Type (CMSRT) Call . .
Test_Request_To_Send_Received (CMTRTS) CaII .

The Modified Sample Execs . . . .
The PROCESS Sample File Requester Exec .

The SENDBACK Sample Server Exec.

Summary Ce e

Chapter 4. VM Extensions to CPI Communications . .
The Relationship between VM and SAA CPI Communications .
Overview of VM Extension Calls . e

Summary of VM Extension Calls .
Managing a Resource .

What Is a Resource Manager'7

What Kinds of Resources Are There? . .

The Identify_Resource_Manager (XCIDRM) CaII

The Terminate_Resource_Manager (XCTRRM) Call .

The Wait_on_Event (XCWOE) Call . .
Security Considerations . . .

The Set_Conversation Securlty Type (XCSCST) CaII

The Set_Conversation_Security_User_ID (XCSCSU) Call. .

The Set_Conversation_Security_Password (XCSCSP) Call .
Intermediate Servers . . . . Coe

Setting Up the SERVR2 V|rtual Machlne .

Converting the SERVR Virtual Machine into an Intermedlate Server

Security Considerations for Intermediate Servers . . .

The Extract_Conversation_Security_User_ID (XCECSU) CaII
The Set_Client_Security_User_ID (XCSCUI) Call .

Overview of Additional VM Extension Calls .
Extract_Conversation_LUWID (XCECL) Call
Extract_Conversation_Workunitid (XCECWU) Call . . .
Extract_Local_Fully_Qualified_LU_Name (XCELFQ) Call .
Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) Call .
Extract_TP_Name (XCETPN) Call Coe e
Signal_User_Event (XCSUE) Call

z/NNM: CPl Communications User's Guide

. 78
. 80
. 80
. 81
. 88
. 93
. . 98
. 105
. 107
. 109
. 113
. 116
. 119
. 119
. 119
. 119
. 119
. 120
. 120
. 120
. 120
121
121
. 122
. 122
. 122
. 126
. 130

. 131
. 131
. 131
. 132
. 133
. 133
. 133
. 135
. 139
. 143
. 156
. 158
. 161
. 162
. 167
. 168
. 170
. 183
. 184
. 191
. 198
. 198
. 198
. 198
. 198
. 198
. 198



The Completed Sample Execs. . . .
The PROCESS Sample File Requester Exec .
The SENDBACK Sample Intermediate Server Exec .
The SENDSERV Sample Resource Manager Exec .
Conclusion . . Ce e

Appendix A. Event Management for CPl Communications .
The VMCPIC System Event.
Managing Events

Appendix B. CPI Communications Conversation States .
Additional CPlI Communications States

Notices . .
Programming Interface Informat|on .
Trademarks.

Glossary

Bibliography . .o
Where to Get z/VM Informatron
z/NVNM Base Library .
Overview .
Installation, Mlgrat|on and Serwce .
Planning and Administration.
Customization and Tuning
Operation and Use .
Application Programming.
Diagnosis
z/V\M Facilities and Features
Data Facility Storage Management Subsystem for VM
Directory Maintenance Facility for z/VM .
Open Systems Adapter/Support Facrllty
Performance Toolkit for VM . . . .
RACF Security Server for z/VM

Remote Spooling Communications Subsystem Networklng for z/VM .

Prerequisite Products .
Device Support Facilities .
Environmental Record Editing and Prrntrng Program

Index .

. 199
. 199
. 203
. 210
. 215

. 217
. 217
. 218

. 223
. 223

. 225
. 227
. 227

. 229

. 231
. 231
. 231
. 231
. 231
. 231
. 231
. 231
. 231
. 232
. 232
. 232
. 232
. 232
. 233
. 233
. 233
. 233
. 233
. 233

. 235

Contents

\'}



Vi  z/VM: CPI Communications User's Guide



Figures

1. Partner Transaction Programs . . . I
2. A User Program Requests a Resource from a Resource Manager Program .. . . . . . . .5
3. Output from PROCESS EXEC Showing Step 1 Results . . . . . . . . . . . . . . . .14
4. Step 1 Output from PROCESS EXEC Showing Pseudonym . . . . . . . . . . . . . . .17
5. Output from PROCESS EXEC Showing Step2 Results . . . . . . . . . . . . . . . .19
6. Output from PROCESS EXEC Showing a Common Error. . . . . . . . . . . . . . . .20
7. Output from PROCESS EXEC Showing Step 3 Results . . . e e e e s 24
8. Output from PROCESS EXEC after Adding UCOMDIR NAMES Entry e e . ... ... .26
9. Output from PROCESS EXEC after SET COMDIR Command . . . . . . . . . . . . . .28
10. System Response after Entering SET SERVER ON Command. . . . 28
11. Output from PROCESS EXEC after Entering the SET SERVER ON Command from the SERVR
Console . . . e |
12. Relationship between UCOMDIR and $SERVER$ NAMES Flles < 124
13. Output Resulting from Execution of SENDBACK EXEC. . . . . . . . . . . . . . . . .35
14. Output from PROCESS EXEC Showing Step 4 Results . . . . . . . . . . . . . . . .35
15. Output from SENDBACK EXEC Showing Step 4 Results . . . . . . . . . . . . . . . .36
16. Output from PROCESS EXEC Showing Step5Results . . . . . . . . . . . . . . . .40
17. Output from SENDBACK EXEC Showing Step 5Results . . . . . . . . . . . . . . . .4
18. Output from PROCESS EXEC Showing Step 6 Results . . . . . . . . . . . . . . . .44
19. Output from SENDBACK EXEC Showing Step6 Results . . . . . . . . . . . . . . . .45
20. Output from PROCESS EXEC Showing Step 7 Results . . . . . . . . . . . . . . . .48
21. Output from SENDBACK EXEC Showing Step 7 Results . . . . . . . . . . . . . . . .49
22. Output from PROCESS EXEC Showing Step 8 Results . . . . . . . . . . . . . . . .54
23. Output from SENDBACK EXEC Showing Step 8 Results . . . . . . . . . . . . . . . .55
24. Flow Diagram for Starter Set Conversation . . . . . . . . . . . . . . . . . . . . .61
25. Results of First Two Calls from PROCESSEXEC. . . . . . . . . . . . . . . . . . .67
26. Results of Next Two Calls from PROCESSEXEC. . . . . . . . . . . . . . . . . . .68
27. Results of Next Two Receive Calls from PROCESSEXEC . . . . . . . . . . . . . . .68
28. Completion of PROCESS EXEC Execution . . . . . . . . . . . . . . . . . . . . .68
29. Results of First Call from SENDBACKEXEC . . . . . . . . . . . . . . . . . . . .69
30. Results of Next Two Calls from SENDBACKEXEC . . . . . . . . . . . . . . . . . .69
31. Completion of SENDBACK EXEC Execution. . . . N 61°)
32. Execution Results after Adding CMPTR to PROCESS EXEC e e e e e .. ... ... T8
33. Results from SENDBACK EXEC Execution . . . e 4
34. Results of Adding CMSSL Call to PROCESS EXEC Y 4
35. Results from SENDBACK EXEC Execution . . . 4
36. Results of Confirmation Processing by PROCESS EXEC e e e . ... ... . . . .86
37. Results of Confirmation Processing by SENDBACKEXEC . . . . . . . . . . . . . . .87
38. Results after Adding CMSPTR Call to PROCESSEXEC . . . . . . . . . . . . . . . .92
39. Results of SENDBACK EXEC Execution . . . . . . . . . . . . . . . . . . . . . .9
40. Results of PROCESS EXEC Execution . . . e [
41. Results after Adding CMSST Call to SENDBACK EXEC e V4
42. Results after Adding CMSDT Call to PROCESSEXEC . . . . . . . . . . . . . . . .108
43. Results after Adding CMSDT Call to SENDBACKEXEC. . . . . . . . . . . . . . . .103
44. Results of PROCESS EXEC Establishing a Basic Conversation . . . . . . . . . . . . . 112
45. Results of SENDBACK EXEC Detecting a Basic Conversaton . . . . . . . . . . . . . 113
46. Results of Setting an Unknown LU Name from PROCESSEXEC . . . . . . . . . . . . 116
47. Results of Setting an Incorrect TP Name from PROCESSEXEC. . . . . . . . . . . . . 118
48. Results on Server Virtual Machine Because of an Incorrect TP Name . . . . . . . . . . . 119
49. Results of PROCESS EXEC Execution . . . e e e e 142
50. SENDBACK EXEC Execution as a Resource Manager T P
51. Results of PROCESS EXEC Execution . . . . e Y
52. Results of XCWOE to SENDBACKEXEC . . . . . . . . . . . . . . . . . . . . .182

© Copyright IBM Corp. 1991, 2009 Vii



53.
54.
55.
56.
57.
58.
590.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

viii

Results of Starting SENDBACK EXEC on the SERVR User ID
Results of Entering QUIT at the SERVR Console .
Results from PROCESS EXEC . ..

Results from SENDBACK EXEC

SENDBACK Must Maintain Two Different Conversatlons .. .
SENDBACK Assigns conversation_ID=ConvA and con_ID= Coan .
Results from PROCESS EXEC . . Coe
Results from Intermediate Server’s SENDBACK EXEC

Results from SERV2’'s SENDSERV EXEC .

Requester’s User ID Is Sent to VMUSRS with TP- Model Apphcatlon B S AIIocate .

Access Security User ID of Intermediate Server (VMUSRZ) Sent to VMUSRS3 .
Results from Requester's PROCESS EXEC . . e
Results from Intermediate Server's SENDBACK EXEC

Results from SERVR2’s SENDSERV EXEC

Results at SERVR2’s Console .

Results from Requester's PROCESS EXEC

Results from Server's SENDBACK EXEC .

Results from SERVR2’'s SENDSERV EXEC

z/NNM: CPI Communications User's Guide

. 156
. 156
. 165
. 166
. 170
.17
. 179
. 180
. 182
. 183
. 183
. 187
. 188
. 190
. 193
. 194
. 195
. 197



Tables

Overview of Communications Programs Using Starter Set Calls .
Overview of Sample Programs with Advanced Set Calls

Overview of Sample Programs Using VM Extensions .
Overview of Sample Intermediate Server Program .

CPI Communications Conversation States . Co
Additional Conversation States for Protected Conversations

Noos~N =

© Copyright IBM Corp. 1991, 2009

State Transitions for SENDBACK EXEC CPI Communications Calls .

. 64
.79
. 134
. 168
. 223
. 223



X  z/VM: CPI Communications User’'s Guide



About This Document

This document is intended to help you learn how to write communications
programs. After working through this document, you should be able to use SAA
Common Programming Interface (CPI) Communications routines to write
communications programs that run in the CMS environment.

This document contains information on the IBM® z/VM® CPI Communications
routines for application programmers.

* It provides an overview and CPlI Communications as implemented in VM.

It describes the starter set of SAA CPl Communications routines and builds a
pair of simple communications programs using only these routines.

* |t adds advanced SAA CPlI Communications routines to programs to show
additional functions available in SAA CPI Communications.

It modifies programs to include several VM extension routines.

Intended Audience

You should read this document if you want to learn how to write communications
programs, but are not familiar with CPI Communications. You do not need to have
any experience with communications programming.

You should be knowledgeable about programming and familiar with CMS. The
examples in this document are coded in REXX, but you do not need to be familiar
with the language to work through this document. You can get acquainted with
REXX by copying the examples.

Where to Find More Information
This book is designed to introduce you to CPl Communications in VM. These other
books contain related information:
« |Common Programming Interface Communications Reference, SC26-4399
* |z/VM: Connectivity, SC24-6174
* |z/VM: CMS Application Development Guidd, SC24-6162
* [z2VM: REXX/VM Referencd, SC24-6221

Other books you may need to develop application programs are listed in the

Bibliography] of this book.

— Links to Other Online Documents
If you are viewing the Adobe® Portable Document Format (PDF) version of this
document, it might contain links to other documents. A link to another
document is based on the name of the requested PDF file. The name of the
PDF file for an IBM document is unique and identifies the edition. The links
provided in this document are for the editions (PDF names) that were current
when the PDF file for this document was generated. However, newer editions
of some documents (with different PDF names) might exist. A link from this
document to another document works only when both documents reside in the
same directory.

© Copyright IBM Corp. 1991, 2009 Xi



Xii zVM: CPI Communications User's Guide



How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:
1. Send an e-mail to mhvrcfs @ us.ibm.com

2. Visit the z/VM reader's comments Web page at www.ibm.com/systems/z/os/zvm/|
[zvmforms/webgs.html|

3. Mail the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department HBMA, Mail Station P181
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:

* Your name and address

* Your e-mail address

* Your telephone or fax number

» The publication title and order number:
z/VM V6R1 CPI Communications User’s Guide
SC24-6180-00

* The topic and page number related to your comment

* The text of your comment

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will only use the personal information that you
supply to contact you about the issues that you submit to IBM.

If You Have a Technical Problem

Do not use the feedback methods listed above. Instead, do one of the following:

» Contact your IBM service representative.

» Contact IBM technical support.

« Visit the z/VM support Web page at www.vm.ibm.com/service/|

« Visit the IBM mainframes support Web page at [www.ibm.com/systems/support/z/|

© Copyright IBM Corp. 1991, 2009 xiii


http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.vm.ibm.com/service/
http://www.ibm.com/systems/support/z/

XiV  z/VM: CPI Communications User's Guide



Chapter 1. Introduction

IBM’s Systems Application Architecture® (SAA) has simplified the task of writing
communications programs by providing the Communications element of the
Common Programming Interface (CPI). CPI Communications, also called SAA
communications interface, provides a programming interface for advanced
program-to-program communications (APPC).

SAA CPI Communications defines a set of routines and parameters that are
consistent across SAA environments. An application written using CPI
Communications on z/VM can be transported to other SAA environments, provided
the application does not use product-specific routines.

This book will help you get started writing simple communications programs using
z/VM’s implementation of CPl Communications. It can be viewed as an introduction
and companion to the [Common Programming Interface Communications Reference,
which fully describes SAA CPI Communications and product-specific extensions.

A Few Words about Our Format and Programs

This book is designed as a self-study primer of the z/VM implementation of CPI
Communications. Gradually, as you work through the book, we will build two sample
CPI Communications programs. The format we will follow is to introduce a CPI
Communications routine and provide a short discussion of its function. Then, we will
add that routine to one of our programs and examine how it affects the results of
the program.

After a few general routines have been added, one of our programs will request the
contents of a particular file from the other program. In order to provide a broad
introduction to CPI Communications, we will use most of the SAA and z/VM specfic
routines in our programs. While some of these routines are not required for the
particular function of this application, their use will help demonstrate how they may
be used in other applications.

One of the more difficult parts of communications programming is determining what
went wrong when a program does not work as expected. As we build the example
programs in this book, things will not always work correctly the first time. The idea
is to let you experience some of the common problems that can occur while we are
here to help you through them. Having these experiences now may help you avoid,
or at least recognize, similar problems in the future.

Error Handling

To limit the complexity of our example programs, we do not handle all error
conditions. The degree of error handling necessary for your programs will depend
on the application requirements.

The Programming Language Used for This Book

CPI Communications is intended for use by programs written in the SAA languages.
We will be using REXX for the programs in this book because that is the one
language we can be sure every z/VM system will have available (and besides, it is
really easy to use). Familiarity with REXX would be helpful, but it is not essential to
your CPI Communications education in this book. Just type carefully.

© Copyright IBM Corp. 1991, 2009 1



Introduction

Before You Start

Setting Up the

Before you begin working through this book, it is important to consider the following
items:

* We expect you to know something about CMS and how to use an editor to
create and modify a file. Familiarity with basic communications concepts would
be helpful. If you have little or no experience in communications programming, it
may be worthwhile for you to read the “Connectivity Programming in CMS”
section of the [z/VM: CMS Application Development Guide

* A complete description of CPl Communications can be found in the
[Programming Interface Communications Reference. That book provides details
concerning the SAA CPI Communications routines.

» We encourage you to implement our example programs, and to do so, you will
need at least two z/VM user IDs and logon passwords (you will need three to
complete the section on z/VM extensions) on a z/VM system. So that you can
work with both of your virtual machines at the same time, you either should have
access to a terminal or workstation that handles multiple sessions or should
arrange to have two terminals at your desk.

User IDs

If you are not a system administrator, you will need to ask a system administrator or
your supervisor to set up two or three virtual machines (user IDs) on the same
z/VM system for you. Throughout this book, we refer to the virtual machines by the
user IDs REQUESTR, SERVR, and SERVR2. You can use any user IDs you like.
Just be careful to change the names appropriately as you copy the example
programs. If you do not plan to work through the chapter on z/VM extensions to
SAA CPl Communications, you can manage very well with only two user IDs
(REQUESTR and SERVR).

We tested the example programs used in this book on virtual machines set up with
4MB of storage.

You will also need to ask the system administrator to add an IUCV ALLOW and an
IPL CMS statement to the CP directory of the SERVR and SERVR2 virtual
machines. The IUCV ALLOW statement authorizes the virtual machine to engage in
communications. Without this statement, the server machine will not be able to
function in the way that you need for this project. The IPL CMS statement
automatically IPLs CMS when the user ID is logged on by the system as a result of
a connection request.

If you plan to work through the z/VM extensions chapter, the SERVR virtual
machine will also need Class B privilege so your program can set an alternate user
ID. We will explain what this means when we need it.

Conventions Used in This Book

To make this book as usable as possible, we employ a couple of devices that are
also used in the(Common Programming Interface Communications Reference,
Namely, we use pseudonyms for the various CPl Communications programming
elements and we use different typefaces to establish visual cues. This section will
help you understand and use these devices effectively.

2 z/VM: CPI Communications User's Guide



Pseudonyms

Visual Cues

Introduction

To make it easier to follow what we are discussing and to improve the readability of
this book, pseudonyms are used for the calls, characteristics, variables, and
characteristic values that make up CPl Communications. For example,
Initialize_Conversation is the pseudonym for the actual callable name CMINIT, and
the pseudonym for one possible return_code value is CM_OK. Pseudonyms can
also be used for integer values in program code by making use of equate or define
statements.

Pseudonyms are not actually passed to CPl Communications as a string of
characters. Instead, the pseudonyms represent integer values that are passed on
the program calls. In the preceding example, CM_OK represents an integer value of
0. A mapping from valid pseudonyms to integer values can be found in an appendix
of the[Common Programming Interface Communications Reference.

z/VM provides sample pseudonym files called copy files for each of the SAA
languages. See the |Common Programming Interface Communications Reference|
(the “Programming Language Considerations” section and the “CPI
Communications on VM/ESA CMS” appendix) for more details on these sample
files.

We use different typefaces to provide visual cues that should make working with
this book easier. For terms that are being defined, we use boldface italics, like new
term. We show the example programs in a different typeface, as shown below. The
first time program code is shown in the book, we show it in boldface. Whenever that
particular program code appears again (as it does fairly often in the next chapter),
we show it in the regular example typeface. This makes it easy to identify new
sections of code and exactly where that code belongs in the program. Here is how
the example typeface looks:

Let's say that this is code introduced previously.

This, on the other hand, is new code being inserted.

This makes it easy to see where to put the new code.
And now this is older code again.

The conventions we use for distinguishing the various programming elements are
much the same as those used in the |Common Programming Interface|
[Communications Reference;

Call_Pseudonyms Mixed case with underscores between words, for
example, Initialize_Conversation

CALLS All uppercase, for example, CMINIT

Variables (This includes parameters and characteristics)

mixed-case italics with underscores separating
words, for example, return_code, conversation_ID

characteristic_values All small uppercase letters with underscores
between words, for example, CM_OK,
CM_NO_DATA_RECEIVED

States Boldface with the initial letter in uppercase and
hyphens between words, for example,
Send-Pending

When discussing the various communications calls, we generally list only the return
codes that are pertinent to the sample program. For other possible return codes,

Chapter 1. Introduction 3



Introduction

see the call descriptions in the|[Common Programming Interface Communications|

A complete list of possible return code pseudonyms and their
descriptions can be found in the “Return Codes” appendix of that book. The return
code pseudonyms and associated integer values can be found in the “Variables and
Characteristics” appendix of that book.

CPI Communications Terms and Concepts for z/VM

Before we start looking at individual CPI Communications routines and begin writing
our sample programs, let’s cover some background information. This section briefly
summarizes some general terms and concepts related to communications
programming and z/VM’s implementation of CPl Communications.

Program Partners, Communications, and Resources

Two CPI Communications programs exchange data using a conversation. The two
programs involved in a conversation are called partners in the conversation, and
each of these application programs can be referred to as a transaction program.
Figure 1[ shows a conversation between Transaction Program A on UserID-1 and
Transaction Program B on UserID-2.

UserID-1 UserID-2
Conversation
Transaction Transaction
Program A Program B

Figure 1. Partner Transaction Programs

The terms local and remote are used to distinguish between the two sides of a
conversation. If a program is being discussed as local, its partner program is said
to be the remote program for that conversation.

A common use of conversations is to access or modify resources. A resource can
be a program, file, database, or any other entity that can be identified for application
program processing. Common examples of resources in z/VM are a Shared File
System (SFS) filepool or SQL/DS database.

The z/VM resources related to communications programming are classified as
global, local, system, and private based on the scope under which they are
identified for use. The only one we are concerned with in this book is the private
resource. For information about global, local, and system resources, see the
|CMS Application Development Guidel A private resource is identified only to the
virtual machine in which it is located, although it can be accessed by authorized
programs that reside anywhere in the same network.

A resource manager is a program that manages access to one or more
z/NNMresources. A resource manager gets requests from a user program to access
resources owned by the resource manager, as shown in [Figure 2 on page 5| The
resource manager program runs in a server virtual machine. The private resource
server virtual machine does not need to be logged on when a program requests to
connect to the private resource manager. If the private server virtual machine is not
logged on and its directory entry contains an IPL statement, CP will autolog it.

4 zVM: CPI Communications User's Guide



Introduction

A user program is a transaction program that requests a service from a resource
manager program. The user program, frequently called a requester program in this
book, runs in a requester virtual machine.

Requester Server
Conversation Resource
User Manager
Program
Resource

Figure 2. A User Program Requests a Resource from a Resource Manager Program

CPI Communications conversations use bidirectional half-duplex connections.
Basically, this means that, although data can be sent by both partners, only one
partner can send data at any given time.

Like Using a Two-Way Radio

The process of passing information back and forth between the partner programs,
using a half-duplex conversation, can be compared to the way a pair of two-way
radio operators communicate. Both situations require adherence to a set of
communications protocols. The radios must be set to the same frequency; the
virtual machines must be linked in some manner. Both the radio operator and the
communications program initiating a conversation must specify the partner of the
conversation. In general, the recipient of the information, another radio operator or
another communications program, must acknowledge the request to communicate
in order for an exchange to take place. The two partners in each type of
conversation must take turns sending information to each other. Finally, one of the
partners indicates to the other that the conversation is being terminated.

Protocols have been established in both realms (two-way radios and CPI
Communications) to make communication easier and more efficient. For example, a
two-way radio conversation might go something like this:

Radio ABC Radio XYZ

ABC to XYZ, over

Go ahead, ABC, over
Give me your location, over

I'm at Broadway and Vine, over
Thank you, ABC out

XYZ out

Yes, it is rather crude, and even odd sounding to those of us who are accustomed
to using the telephone for all our remote communications. But it serves a purpose.
Fortunately, CPI Communications is rather more sophisticated than two-way radio
communications, but the principle is still the same.

You will note that in our example, only one side (partner) talked at any one time.
We can say that the talking (or sending) partner was in Send state and that the
listening (or receiving) partner was in Receive state. These are the only two states
available in two-way radio communications (unless you count idle and off as states).
These are also the two basic states in the half-duplex protocol.

Chapter 1. Introduction 5



Introduction

In CPI Communications, however, considerably more flexibility is possible even
though we are still dealing with half-duplex connections. To use the flexibility
provided by computer communications, new states were added on top of the basic
half-duplex protocol. These states are a part of CPI Communications and they
provide various capabilities to communications programs.

Even our simple two-way radio conversation suggests two more states, off (or no
conversation) and start (or set up for a conversation, including idle time before the
first transmission). Indeed, CPI Communications defines two states that coincide
with these: Reset and Initialize states. Reset state means that there is no
conversation activity and Initialize state means that a conversation is being set up.
Thus, we already have four states in simple computer communications:

* Reset

 Initialize

* Send

* Receive

We will cover these and additional states as we work through the example
programs in this book. For now, just remember that the type of communications
protocol we are working with is basically like a two-way radio conversation. We can
add a good deal of sophistication because we are also using computers and
application programs to do the work for us.

Type of Conversation to Be Used

CPI Communications defines two types of conversations, mapped and basic.
Mapped conversations allow programs to exchange arbitrary data records in
formats agreed upon by the application programmers writing the communications
programs. Basic conversations allow programs to exchange data in a standardized
format, that is, a stream of data containing 2-byte length fields that specify the
amount of data to follow before the next length field.

Because we will be using a mapped conversation and a private resource, the
information discussed in this manual will focus on programming from that
perspective. Basic conversations require much more work on the programmer’s part
than mapped conversations. You can find additional information on basic
conversations in the [Common Programming Interface Communications Referencd.

Program Calls

CPI Communications programs communicate with each other by making program
calls. These calls are used to establish the characteristics of the conversation and
to exchange data and control information between the programs.

When a program makes a CPl Communications call, the program passes
characteristics and data to CPI Communications using input parameters. When the
call completes, CPI Communications passes data and status information back to
the program using output parameters.

SAA CPlI Communications Calls

The SAA CPl Communications calls can be divided into two groups, a starter set
and an advanced set. The starter set consists of calls for starting and ending
conversations and for exchanging data. Simple communications programs can be
written exclusively with the routines in this group.|Chapter 2, “Starter Set CPI|
[Communications Calls,” on page 9 uses only these communications routines to
build the first working sample programs.

6 z/VM: CPI Communications User's Guide



Introduction

The advanced set consists of calls for synchronization and control, modifying
conversation characteristics, and querying (extracting) conversation characteristics.
These calls are used in [Chapter 3, “Advanced CPI Communications Calls,” on page
to add more capabilities to our communications programs.

z/VM Extensions to CPI Communications

z/NNM provides a group of extension calls to CPI Communications that allow
programs to exploit z/VM’s capabilities. An application taking advantage of the
added z/VM function, however, is not transportable to other SAA environments
without modification. [Chapter 4, “VM Extensions to CPI Communications,” on page]
demonstrates the use of some of the routines in this group.

Chapter 1. Introduction 7



8 z/VM: CPI Communications User’'s Guide



Chapter 2. Starter Set CPI Communications Calls

As we pointed out in [Chapter 1, “Introduction,] the starter set of CPI
Communications routines is made up of calls to start and end conversations and to
exchange data. The six calls in this group are adequate for writing simple
communications programs, and that is just what we are going to do with them
momentarily. The following two tables will familiarize you with these calls.

Calls Used for Starting and Ending Conversations

Pseudonym Call Description Page

Initialize_Conversation CMINIT Initializes values for various conversation
characteristics before the conversation is
allocated

Allocate CMALLC Establishes a conversation with a partner
transaction program

Accept_Conversation CMACCP Accepts an incoming conversation

Deallocate CMDEAL Ends a conversation

Calls Used for Exchanging Data

Pseudonym Call Description Page

Send_Data CMSEND Sends one data record to the remote
program

Receive CMRCV Receives information from a given 36
conversation

Using the Starter Set Calls

In this chapter you will learn how to use the starter set CPl Communications
routines to start conversations, send data, receive data, and end conversations. The
routines will be introduced in the order depicted in the following table. This table is
not meant to illustrate the actual flows (transmission of information) of the
conversation. A flow diagram is provided at the end of this chapter to help visualize
how our communications programs work together.

Table 1. Overview of Communications Programs Using Starter Set Calls

Step REQUESTR User ID SERVR User ID
1. Initialize_Conversation
2. Allocate
3. Send_Data
4. Accept_Conversation
5. Receive loop
6. Receive loop
7. Send_Data loop
8. Deallocate

Getting Started

Before you can make much progress in writing communications programs, you will
need to set up two virtual machine user IDs. One of the virtual machines will be the

© Copyright IBM Corp. 1991, 2009 9



Starter Set Calls

requester, and the other will act as a server. If you have not already obtained the
user IDs, go back to [‘Setting Up the User IDs” on page 2| for a description of what
you need. Log on the REQUESTR and SERVR user IDs after they are ready.

We will begin working from the REQUESTR user ID, where we will create a user
program called PROCESS EXEC.

— FYI: REXX Considerations
Because this is a REXX exec, we will want to begin with a comment line
(/* */)

In REXX you can specify a subcommand environment to help ensure
predictable and efficient execution of REXX execs. The REXX subcommand
environment for CPI Communications is called CPICOMM, and we can either
specify ADDRESS CPICOMM once for the entire exec or each time we issue a call.
Because our focus is on CPlI Communications, we will go ahead and set
CPICOMM as the primary subcommand environment at the top of the
program. As a result, we need to keep in mind that the appropriate ADDRESS
statement will need to precede any CMS or CP commands issued by our
program.

As part of our basic error checking, we want our program to check the REXX
special variable RC. If RC is not zero, then the CPI Communications call was
not invoked and none of the call’s output parameters contain valid values. The
chapter on invoking communications routines in the [z/VM: REXX/VM

lists possible values for the RC variable. We will add the REXX
instruction SIGNAL ON ERROR to our program, which will result in the RC
variable being monitored for us. If RC is set to a nonzero value, a subroutine
named Error in our program will be called automatically.

These REXX considerations suggest that we start our program with the following

lines:

/*:=================================================================*/
/* PROCESS EXEC - Sample file requester application. */
/*==================================================================*/
S S S S S S S S S ST S SO USRS */
/* Set up REXX environment for program-to-program communications */
/* and enable trapping of REXX errors. */
Ty Ly Py gy gy Sy S Sy */

address cpicomm
signal on error

GetOut:

exit
J R Subroutines ----------mmmmmeeeoo */
Error:
T */
/* Report error when REXX special variable RC is not 0. */
ey gy g S */
say

say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
signal GetOut

Now, we are ready to begin our exploration of CPI Communications.

10 zVM: CPI Communications User's Guide



Starter Set Calls

Step 1. The Initialize_Conversation (CMINIT) Call

Before communication can begin, we must initiate a conversation. There are two
steps involved in initiating a CPl1 Communications conversation: initialization of
conversation characteristics and allocation of the conversation. The purpose of the
Initialize_Conversation (CMINIT) routine is to handle the first step of that process.

Conversation characteristics define the conversation to be established. Returning to
the two-way radio conversation for an example, the radio operator must decide
what transmission frequency to use before transmitting any information. So, the
transmission frequency can be considered a characteristic of the radio conversation.

Various characteristics are associated with communications conversations, and the
Initialize_Conversation call initializes most of those characteristics to predefined
values. (The “Conversation Characteristics” section in the |[Common Programming|
linterface Communications Referencd contains a complete list of these conversation
characteristics and their default values. For example, the conversation_type
characteristic is initialized to CM_MAPPED_CONVERSATION.) The default
characteristic settings are sufficient in many cases, but if any of these default
values are not appropriate for a particular application, they can be changed easily
with calls to other CPI Communications routines that we will discuss in the next
chapter.

Another result of a call to the Initialize_Conversation routine is that CPI
Communications side information is examined. The values of several additional
conversation characteristics are set based on the contents of the side information.

— FYI: Side Information

Certain information about the partner program that will be participating in a
conversation must be provided to complete the initialization of conversation
characteristics. This data is referred to as side information and it identifies the
location of the partner program.

VM’s implementation of side information uses CMS communications directory
files. A communications directory file is a NAMES file that can be set up either
on a system level (by a system administrator) or on a user level. We will
discuss this in more detail later.

During the discussion of a communications routine, we will want to examine the
particular parameters associated with it. When showing the general call format for a
routine, we will indicate which parameters require that a value be provided on the
call (input parameters) and which ones return a value upon completion of the call
(output parameters). The general format for calling Initialize_Conversation is:

CALL CMINIT(conversation_ID, output
sym_dest_name, input
return_code) output

You will notice that this example is similar to the call format shown for
Initialize_Conversation in the [Common Programming Interface Communications|
except that we are emphasizing whether a parameter serves as input or
output. Note that REXX uses a slightly different call format; we are using the

Chapter 2. Starter Set CPI Communications Calls 11



Starter Set Calls

standard format just for illustration here. CALL is the language-specific syntax for
calling CPI Communications routines. CMINIT is the name of this call.

Input Parameter

The sym_dest_name parameter is the sole input parameter on this call, so it is the
only one for which we need to provide a value. Sym_dest name is an abbreviation
of “symbolic destination name”, which is meant to indicate that this parameter
identifies the remote partner for the conversation. The value provided as input to
the routine is used as an index into a side information file. Data from the
corresponding entry in side information initializes several conversation
characteristics.

Output Parameters

The two output parameters for Initialize_Conversation are conversation_ID and
return_code. The conversation_ID is assigned by CPl Communications to uniquely
identify this conversation. It is used as input on all subsequent CPI Communications
calls made for the conversation.

the result of the call execution. All of the return codes are defined in the
|Programming Interface Communications Reference] although the return_code
parameter for a particular routine can only take on a subset of those values.

Each CPlI Communications routine has a return_code parameter, which specifies

It is beyond the intent of this tutorial to cover all of the return_code values that are
possible for each routine. Instead, we are going to highlight just some of the more
common ones. For Initialize_Conversation, there are two codes of interest:
CM_OK (0)
indicates that the characteristics for a conversation have been successfully
initialized. That’s the code we will want to get back.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that a CMS error has occurred. Whenever a
CM_PRODUCT_SPECIFIC_ERROR is returned, a file on your A-disk called
CPICOMM LOGDATA is updated with a message to help you understand
what type of problem was encountered. Message lines are appended to this
file, so the last line in the file is the most recent. Additional information on
product specific errors can be found in the Appendix “CPl Communications
on VM/ESA CMS” in the |[Common Programming Interface Communicationd

Results of the Call

If the Initialize_Conversation call completes successfully, meaning that the
return_code was CM_OK, then the conversation enters Initialize state. Prior to this
point, we had been in Reset state. Keep this in mind. It will be useful later on when
we discuss states in more detail.

Adding CMINIT to Our Requester Program
To call the Initialize_Conversation routine, we will need to use the routine’s callable
name CMINIT.

As previously noted, the sym_dest_name is the only input parameter for this
routine. We can either assign a value (the identifier for our remote partner) to the
sym_dest_name variable in our program before calling Initialize_Conversation, or
we can accept the value from the console as an operand on the exec call. To make
the program more dynamic, we will provide the sym_dest_name as console input.
We will need to add an ARG sym_dest_name statement to our REXX exec to pull the
symbolic destination name from the console and place it in the program stack.

12 zVM: CPI Communications User's Guide



Starter Set Calls

(Ordinarily, we would also add some error checking to ensure that any input from
the console meets our expectations, but we will forgo that in these simple examples
to save typing and focus on the communications calls.)

In addition, we will display the results of the Initialize_Conversation call. We will add
a say statement to show which call was executed. By passing a list of parameters
to a subroutine called TraceParms, we can also display the current value for each
of the parameters.

We will be checking the return_code output parameter after each CPI
Communications call to determine whether the call completed successfully. If
return_code contains a nonzero value, we will want to know about it, so we will add
a subroutine called ErrorHandler, which will be called whenever the program
encounters a problem.

— FYI: More REXX Considerations

Note that when we add a call to a CPlI Communications routine, we need to
put single quotation marks around the call.

The subroutine TraceParms uses the REXX function WORDS to determine the
number of blank-delimited words in a string. In our case, each word is a
parameter name, so WORDS will return the number of parameters that need
to be processed. TraceParms also uses the REXX functions WORD, which
returns the specified word in a string, and VALUE, which returns the value that
a specified symbol represents. So, we can use WORD to extract a parameter
name followed by VALUE to display the current value of that parameter.

Adding the Initialize_Conversation call and the new subroutines to the PROCESS
EXEC results in these changes (denoted by highlighting):

/*::================================================================*/
/* PROCESS EXEC - Sample file requester application. */
/*========================================s=======s=s=sss====s=s==s========k/
arg sym dest_name . /* get user's input x/
/ey */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
S S S S S S Sy S S S IS USSP */

address cpicomm
signal on error

[ e m e e e e */
/* Initialize the conversation. */
T */

'CMINIT conversation_ID sym_dest_name return_code'

say; say 'Routine called: CMINIT'

if (return_code -= 0) then call ErrorHandler 'CMINIT'

call TraceParms 'conversation_ID sym_dest_name return_code'

GetQut:

exit
e e e Subroutines -=-------mmmmmmm */
TraceParms:
[ e m e e e e e */
/* Display parameters and their values as passed to this subroutine.*/
P */

parse arg parmlist

Chapter 2. Starter Set CPl Communications Calls 13



Starter Set Calls

1 to words(parmlist)
word (parmlist,word_num)

do word_num

parameter
select

when (parameter = 'return_code') then

say return_code is' return_code
otherwise
say ' ' parameter 'is' value(parameter)
end

end
return
Error:
2y */
/* Report error when REXX special variable RC is not 0 */
T Sy S Sy S Sy Sy USSRy S Sy S */
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc

signal GetOut

ErrorHandler:
S S S S S S S Sy S SO S SO S S */
/* Report routine that failed and the error return code. */
J = = o e e */
parse arg routine_name

say

say 'x ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' return_code
signal GetOut

Throughout the book, we will continue using highlighting as in this example to
designate new or changed code whenever we update one of our execs.

Please type very carefully each time you add new code to the program and check

for typing mistakes because these can cause errors. Now file the exec and run it.
Using GETFILE as the sym_dest_name, enter

process getfile
at the command line.

The following should be displayed on your terminal:

process getfile

Routine called: CMINIT
conversation_ID is 00000000
sym_dest name is GETFILE
return_code is 0

Ready;

Figure 3. Output from PROCESS EXEC Showing Step 1 Results

As you can see, our return code is zero. Therefore, it should be safe to assume
that the conversation initialization was a success. The symbolic destination name
(sym_dest_name) is, of course, the value we provided when the exec was invoked.

The conversation_ID has special significance. It uniquely defines the local
program’s side of the conversation for CPI Communications.

14 zVvM: CPI Communications User's Guide



Starter Set Calls

Did you notice that we compared the return_code value to zero after the
Initialize_Conversation call? We could add more meaning to the program by
substituting a pseudonym for the integer zero. Pseudonyms are defined for the
integer values of various CPI Communications variables and characteristics and can
be found in an appendix of the[Common Programming Interface Communications|

If you look up return_code in the variables and characteristics appendix mentioned
above, you will see that the pseudonym associated with a return_code of zero is
CM_OK. So, we can substitute the pseudonym CM_OK in our program to replace
references to a return_code value of zero. But, while CM_OK is equivalent to zero,
it is a pseudonym that only has meaning as a value for the return_code parameter.
For example, CM_WHEN_SESSION_ALLOCATED is the pseudonym that should
be used to refer to a return_control value of zero. Although both pseudonyms
represent values of zero, the pseudonyms themselves provide more specific
information about the value with regard to the variable or characteristic they are
associated with.

— FYI: Copy Files—the Easy Way to Use Pseudonyms
CMREXX COPY is a sample CPI Communications pseudonym file that
includes all of the conversation characteristic values. It equates pseudonyms
to their actual integer values. CMREXX COPY should be located on your
system disk.

Before we can use the pseudonyms in our program, they have to be defined
to our program. We can do this by reading the CMREXX COPY file values into
storage using the EXECIO command with a DO loop that includes the REXX
interpret statement.

We can also take advantage of REXX’s compound symbol support, which
permits arbitrary indexing of collections of variables that have a common stem.
For example, by using the return_code value returned from
Initialize_Conversation as an index to a compound variable called
cm_return_code, we can display a pseudonym result rather than just an
integer. CMREXX COPY includes compound variable versions of each of the
conversation characteristics.

The “Programming Language Considerations” section of the [Commor]
[Programming Interface Communications Referencd contains information on
pseudonym files for other SAA languages.

Let’s try using the pseudonyms in our program. First, we will add an EXECIO
statement to process the CMREXX COPY file, and then we will use pseudonyms
wherever we can.

/*:::=:==::==:==::==:==:==::==:==::==:==::==:==:==::==:==::==:==::==*/
/* PROCESS EXEC - Sample file requester application. */
[*===============somsomsomsomoooocmoossomsooooooooooooooooossosooooyf
arg sym_dest_name . /* get user's input */
e */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
2y */

address cpicomm
signal on error

Chapter 2. Starter Set CPl Communications Calls 15



Starter Set Calls

/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
P */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

S */
/* Initialize the conversation. */
e */

'CMINIT conversation_ID sym dest_name return_code'

say; say 'Routine called: CMINIT'

if (return_code -= CM_0K) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym dest_name return_code'

GetQut:

exit
[Hm e Subroutines -=-------mmmmmmm e */
TraceParms:
S */
/* Display parameters and their values as passed to this subroutine.*/
S S S S Sy Sy S Sy S Sy Sy USSR S —— */

parse arg parmlist
do word num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
otherwise
sayll
end
end

parameter 'is' value(parameter)

return

Error:

say
say '* ERROR: REXX has detected an error'

say ' The return code variable RC was set to' rc
signal GetOut

ErrorHandler:

ey */
/* Report routine that failed and the error return code. */
[ e m e e */
parse arg routine_name

say

say '* ERROR: An error occurred during a' routine_name 'call'

say The return_code was set to' cm_return_code.return_code

signal GetOut

After making the updates, file the exec and start it again with

process getfile

Now, your results should look like:

16 z/VM: CPI Communications User's Guide



Starter Set Calls

process getfile

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Ready;

Figure 4. Step 1 Output from PROCESS EXEC Showing Pseudonym

The return_code parameter was again set to zero following the completion of the
Initialize_Conversation call. Our program then displayed the value of
cm_return_code.return_code, or cm_return_code.0, which is CM_OK.

From this point on, your particular conversation_ID value may differ from the one
we show. Differences in this value do not matter, as long as you use the value
returned on the Initialize_Conversation call when issuing other calls on this
conversation.

If you are not fond of typing, you might want to make a copy of PROCESS EXEC
and name it SENDBACK EXEC. Be sure to change the comment line at the top of
the SENDBACK copy to reflect its name and description, remove the

“arg sym dest name .” line, and remove the seven lines comprising the “Initialize
the conversation” section. We will use this file later.

Step 2. The Allocate (CMALLC) Call
Having initialized a conversation (using the Initialize_Conversation call), an
application uses the Allocate (CMALLC) call to establish the conversation with its
partner transaction program.

— FYI: What the Allocate Call Actually Does

Before the Allocate call can establish a conversation, it must make sure that
there is a logical connection between the local program’s system, also known
as a logical unit (LU) in this context, and the remote program’s system. This
logical connection is called a session, shown in the following drawing as a
pair of solid lines between the System1 LU and the System2 LU.

Systeml System2
| |
Program A | --====-mmm - Program B
| |
| |
Conversation --------- Session

Each session can support one conversation. In our sample programs this is
not really important, because both partners are considered to be on virtual
machines on the same VM/ESA® system and are therefore in the same LU.
Sessions are required on VM only when connecting through an SNA network.
A return code of CM_OK indicates that the session was successfully
established. However, an active session (successful execution of Allocate)
does not guarantee that the communication partner’s transaction program can
be started.

Chapter 2. Starter Set CPl Communications Calls 17



Starter Set Calls

The allocation request may not be sent until the local send buffer becomes full or is
flushed. We will discuss this in more detail in the next chapter.

The format for Allocate is:

CALL CMALLC(conversation_ID, input
return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameter
The values for return_code on an Allocate call that are of interest to us are:
CM_OK (0)
indicates that the conversation has been allocated and that the local
program has entered Send state.
CM_PARAMETER_ERROR (19)
indicates that there is a problem with one of the target destination
characteristics provided in side information or explicitly set.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that an error unique to the VM product has occurred. Check the
CPICOMM LOGDATA file for a summary of the error.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.
CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state, meaning the
specified conversation either has not been initialized or has already been
allocated.

Results of the Call

When return_code indicates CM_OK, the conversation enters Send state. This
does not, however, guarantee that the partner’s transaction program has been
started.

Adding CMALLC to Our Requester Program

Let’s add the Allocate call to the PROCESS EXEC. To save space, we will not show
the entire program each time we add a new routine. So that you can determine
where the new code should be inserted, we will show only the sections of code that
precede and follow it. Your exec now should have the following lines in it:

/¥===========================s==s=ssssssssssssssssssssssssssssssssook/
/* PROCESS EXEC - Sample file requester application. */
/*:::===============================================================*/
)* __________________________________________________________________ */
/* Initialize the conversation. */
e */

'CMINIT conversation_ID sym dest _name return_code'

say; say 'Routine called: CMINIT'

if (return_code == CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym dest name return_code'

Jmm e e e e */
/* Allocate the conversation. */
ey S */

'CMALLC conversation_ID return_code'’

say; say 'Routine called: CMALLC'

if (return_code ~= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms 'conversation_ID return_code'

18 zVM: CPI Communications User's Guide



Starter Set Calls

GetOut:
exit

Now file the exec and execute it, again using GETFILE as the sym_dest_name:
process getfile

The results should be:

process getfile

Routine called: CMINIT
conversation_ID is 00000000
sym_dest name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_0K

Ready;

Figure 5. Output from PROCESS EXEC Showing Step 2 Results

As you can see, both return codes were CM_OK, so the conversation initialization
and allocation appear to have been successful and we are now in Send state.

— FYI: If You Got a Product-Specific Error
If, instead of the output shown in [Figure 5, you received a
CM_PRODUCT_SPECIFIC_ERROR, look in the CPICOMM LOGDATA A file
for the following message:

CMALLC_PRODUCT_SPECIFIC_ERROR: CMSIUCV CONNECT completed with return
code 1011

As an exercise, you may want to track down this message to see if you can
find out what it means. (Hint: You will need the |z/VM: CMS Macros and
Functions Referencd to look up the CMSIUCV macro and the |z/VM: Cﬂ
Programming Serviced book to look up the APPCVM macro.) This error is
most likely saying that your VM system does not have the Transparent
Services Access Facility (TSAF) installed. TSAF is used for communications
among up to eight VM systems.

This problem will be resolved before we get to Step 4, so for now, please
continue reading and adding code to the program, but do not try to run the
program because your results will differ from those shown.

Note on a Common Error
Let’s take a moment to look at an error that can show up rather easily in a program.

The Allocate call expects to have a conversation ID passed to it in a valid format.
Suppose we misspell our parameter name when adding the Allocate call to our
program, like this:

'CMALLC onversation_ID return_code'

Chapter 2. Starter Set CPl Communications Calls 19



Starter Set Calls

While we can choose any parameter name that we want, our program will be
incorrect because the conversation identifier was previously stored in
conversation_ID, not onversation_ID. Here is the output displayed when this altered
program is executed:

process getfile

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK
DMSAXR1292E Error calling CPI-Communications routine, return code -26002
30 *-x 'CMALLC onversation_ID return_code'
+++ RC(-26002) +++

* ERROR: REXX has detected an error
The return code variable RC was set to -26002
Ready;

Figure 6. Output from PROCESS EXEC Showing a Common Error

Error codes that can be returned from ADDRESS CPICOMM are documented in the
lz/VM: REXX/VM Referencelin the chapter called “Invoking Communications
Routines”. The explanation listed for -26nnn indicates that there is a problem with
parameter number nnn. The call name, for example CMINIT, is considered to be the
first parameter. In our case, nnn is 002 indicating that the second parameter is
causing the problem. By examining that parameter in our program, we see that the
error can be corrected quite easily.

Step 3. The Send_Data (CMSEND) Call

The Send_Data (CMSEND) call sends up to 32767 bytes of data to the remote
program. When issued during a mapped conversation (which we are using), this call
sends one data record to the remote program. In this context, a data record is the
contents of the buffer passed on the Send_Data call.

The format for Send_Data is:

CALL CMSEND(conversation_ID, input
buffer, input
send_length, input
request_to_send_received, output
return_code) output

Input Parameters

The Send_Data call expects three input parameters, including the
conversation_ID. The buffer parameter specifies the data record to be sent. While
this record can be defined within the program, it may be useful for some
applications to set buffer to a character string provided by console input.

The send_length parameter specifies the size of the buffer contents in bytes (up to
32767).

Output Parameters

The request to_send_received parameter returns an indication of whether a

request-to-send notification has been received from the partner program. The

request_to_send_received variable can have the following values:
CM_REQ_TO_SEND_NOT_RECEIVED (0)

20 z/VM: CPI Communications User's Guide



Starter Set Calls

CM_REQ_TO_SEND_RECEIVED (1)

If a request-to-send notification was received, it means that the remote program has
requested that the local program’s end of the conversation enter Receive state,
which would place the remote program’s end of the conversation in Send state.

Request_to_send_received does not return a value when return_code is either
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

Some of the return_code values of interest to us are:

CM_OK (0)
indicates that the Send_Data call executed successfully.

CM_SECURITY_NOT_VALID (6)
indicates that the allocation request was rejected by the remote LU because
the access security information provided by the local system is invalid. The
VM appendix to the(Common Programming Interface Communications|
Iists more specific possible explanations for this return code. The
conversation is in Reset state.

CM_TPN_NOT_RECOGNIZED (9)
indicates that the Allocation request was rejected by the remote LU
because the specified remote program name was not recognized at the
remote system. The VM appendix to the [Common Programming Interface]
|Communications Reference] lists more specific possible explanations for this
return code. The conversation is in Reset state.

CM_TP_NOT_AVAILABLE_NO_RETRY (10)
indicates that the allocation request was rejected because the remote
system could not start the remote program. The condition is not temporary
so the program should not retry the allocation. The conversation is in Reset
state.

CM_TP_NOT_AVAILABLE_RETRY (11)
indicates that the allocation request was rejected because the remote
system could not start the remote program. The condition may be
temporary so the program can retry the allocation. The conversation is in
Reset state.

CM_DEALLOCATED_ABEND (17)
indicates that the remote program or system deallocated the conversation,
terminated abnormally, or ended without deallocating the conversation. The
conversation is in Reset state.

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that an error unique to the VM product has occurred. Check the
CPICOMM LOGDATA file for a summary of the error.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the
send_length is greater than 32767.

CM_PROGRAM_STATE_CHECK (25)
most commonly indicates that the conversation is not in Send or
Send-Pending state.

CM_RESOURCE_FAILURE_NO_RETRY (26)
indicates that a failure occurred that caused the conversation to be
terminated prematurely or the remote program ended without deallocating
the conversation. The VM appendix to the |Common Programming Interfacd
|Communications Reference| lists more specific possible explanations for this
return code. The condition is not temporary. The conversation is in Reset
state.

CM_RESOURCE_FAILURE_RETRY (27)
indicates that a failure occurred that caused the conversation to be

Chapter 2. Starter Set CPl Communications Calls 21



Starter Set Calls

terminated prematurely. This could occur if the TSAF virtual machine
encountered a problem during its processing or if the TSAF link went down.
The condition may be temporary so the program can retry the allocation
request. The conversation is in Reset state.

— FYI: A Note on When Errors Are Reported

It is worth mentioning that some CPlI Communications errors are not reported
when they first occur. If you read through the possible return_code values
listed, you probably noticed that some of them seemed more appropriate to an
Allocate call. In fact, they are indeed allocation errors—they are reported
because the Allocate call did not result in a conversation for one reason or
another. However, they are not actually reported until some call following the
Allocate, such as a Send_Data (CMSEND) call, is executed.

dhis delay in reporting errors should be kept in mind while debugging
application errors. Your program should be prepared to handle allocation
errors on other calls, such as Send_Data and Receive (CMRCV).

Results of the Call

A number of factors, including the values of various conversation characteristics,
can affect the results of the Send_Data call. We will discuss some of these later in
the book. For now, a CM_OK return_code value indicates that the data record has
been “sent” and that the conversation is still in Send state.

Adding CMSEND to Our Requester Program
Let’'s add the Send_Data call to the PROCESS EXEC.

Since this is a program to request the contents of a file, we will provide the file
name, file type, and file mode of the file we are requesting when we invoke the
exec. By placing the file name, file type, and file mode in the buffer parameter, this
information can be passed to the server on the Send_Data call.

The existing ARG statement needs to be updated to retrieve the additional
arguments we will be providing. We will also need to initialize the buffer and
send_length variables.

Your exec should now have the following lines in it:

/*:::===============================================================*/
/* PROCESS EXEC - Sample file requester application. */
/*:::===============================================================*/
arg sym_dest_name fname ftype fmode . /* get user's input */
gy g S */
/* If a file was not specifically requested, set up a default. */
Ty gy Ny Sy Sy S S RS */
if (fname = '') then
do
fname = 'TEST'
ftype = 'FILE'
fmode = 'A’
end

say 'Requesting the file: ' fname ftype fmode

}* __________________________________________________________________ */
/* Initialize the conversation. */
ey */

22 z/VM: CPI Communications User's Guide



Starter Set Calls

'CMINIT conversation_ID sym dest name return_code'

say; say 'Routine called: CMINIT'

if (return_code -= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym dest_name return_code'

[ m e e e e */
/* Allocate the conversation. */
L PRt */

'CMALLC conversation_ID return_code'

say; say 'Routine called: CMALLC'

if (return_code -= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms 'conversation_ID return_code'

T S */
/* Send the name of the file being requested to the partner program.x/
Ty ey ey gy S */

buffer = fname ftype fmode

send_length = length(buffer)

'CMSEND conversation_ID buffer send_length',
'request_to_send_received return_code'

say; say 'Routine called: CMSEND'

if (return_code -= CM_0K) then call ErrorHandler 'CMSEND'

call TraceParms 'conversation_ID buffer send_length',

'request_to_send_received return_code'

GetQut:

exit
[Hmmmm e Subroutines -----------——--mmmmmm - */
TraceParms:
2y */
/* Display parameters and their values as passed to this subroutine.x/
e */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' left(buffer,send_length)
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
otherwise
Sayll

parameter 'is' value(parameter)
end

end

return

FYI: The LEFT Function in REXX
The REXX function LEFT returns the leftmost characters of a character string
for a specified length. Specifying the send_length with the LEFT function of
REXX ensures that the say statement will display exactly what we put into the
buffer.

File the exec and run it. This time, in addition to using GETFILE as the
sym_dest_name, use TEST as the fname, FILE as the ftype, and A as the fmode.
(Having included this file name as a default in our program, we do not have to

Chapter 2. Starter Set CPl Communications Calls 23



Starter Set Calls

specify it each time we invoke the exec in the future.) The fact that we have not
created TEST FILE A does not matter at this point.

After starting the exec with
process getfile test file a

the following should be displayed:

process getfile test file a
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMSEND
* ERROR: An error occurred during a CMSEND call

The return_code was set to CM_TPN_NOT_RECOGNIZED
Ready;

Figure 7. Output from PROCESS EXEC Showing Step 3 Results

The return code of CM_TPN_NOT_RECOGNIZED indicates a problem. It looks like
our Initialize_Conversation and Allocate calls were successful, but the Send_Data
call did not work. If we look back at the possible values for the return_code
parameter on the Send_Data call, we see that we did not actually have a
conversation even though the Allocate call completed with a return_code value of
CM_OK. This allocation error is what the FYI box was referring to.

So the allocation request was rejected because the program name specified on the
Initialize_Conversation call was not recognized. The problem is that the symbolic
destination name GETFILE has not been identified as the transaction program
name (TP_name) of a private resource.

Okay, then how can we define a symbolic destination name? Data about the target
destination location is typically placed in side information, which is a CMS
communications directory in VM. The communications directory is a good place to
check first when a return code of CM_TPN_NOT_RECOGNIZED is received. Based
on data in the communications directory, the symbolic destination name is resolved
and the TP_name is initialized for use in the allocation request to the partner
program.

24  z/vM: CPI Communications User's Guide



Starter Set Calls

— FYI: CMS Communications Directories
Let’s digress from our program for a moment and investigate how VM
implements side information.

VM implements side information with CMS communications directory files. A
communications directory file is a special CMS NAMES file. Communications
directories can be set up at either a system or a user level.

System Communications Directory: A system administrator sets up the
system-level communications directory. The default name defined in the
system profile exec (SYSPROF EXEC) for this communications directory is
SCOMDIR NAMES. It is usually located on the system S-disk or in a public
SFS file pool where all users can read it.

User Communications Directory: Any CMS user can create a personal CMS
communications directory. UCOMDIR NAMES is the default name defined in
the system profile exec (SYSPROF EXEC) for the user-level directory. In
general, this directory is only necessary if an application uses symbolic
destination names that are not already in the SCOMDIR NAMES file or if there
is a need to override the system-defined values.

Note: You can create or change your communications directories using the
NAMES command with the COMDIR option. See the NAMES command
usage notes in the |zZVM: CMS Commands and Ulilities Reference for
more information.

When VM resolves a symbolic destination name, the user-level directory, if
one exists, is checked first for a matching entry. If the user-level
communications directory does not contain the specified symbolic destination
name, CMS searches the system-level communications directory for a
matching entry. If a symbolic destination name is defined in both the
UCOMDIR NAMES file and the SCOMDIR NAMES file, only the information in
the UCOMDIR NAMES file is used.

If the resource identified in the initialization request does not match a symbolic
destination name defined in either of the CMS communications directories,
then the initialization request is processed using the specified symbolic
destination name as the name of a global or local resource located in the
same TSAF collection as the user program.

Here are the communications directory tags and associated values we will be
using now:

Tag What Value the Tag Specifies

tnick. Symbolic destination name for the target resource (1-8
characters).

:Tuname. Identifies where the resource resides. (For our purposes, this
is the virtual machine in which our partner program will
execute.)

:tpn. The transaction program name as it is known at the target LU.

Chapter 2. Starter Set CPl Communications Calls 25



Starter Set Calls

We need to update either the SCOMDIR NAMES file or the UCOMDIR NAMES file
to include a valid entry for our GETFILE symbolic destination name. The server
program we are writing can be considered a private resource manager, so add an
entry to the UCOMDIR NAMES file. If you do not have a UCOMDIR NAMES file,
you can create one with the following entry (which is all you need in the file):

:nick.GETFILE :Tuname.*USERID SERVR
:tpn.GET

The GETFILE value for the :nick. tag corresponds to the sym_dest_name we have
been specifying when we invoke our exec. For the :1uname. tag, the *USERID is a
keyword that indicates that our partner program is a private resource manager in
the same TSAF collection, and SERVR identifies our partner’s virtual machine
(remember that if you used a different user ID for this virtual machine, you need to
substitute that name here). GET, on the :tpn. tag, identifies the target private
resource.

The order of the tags in the communications directory and the spacing between
them will not make any difference, as long as all the tags for an entry are grouped
together following the :nick. tag for that entry. If you put more than one tag on a
line, separate them with at least one blank.

Save the additions to the UCOMDIR NAMES file, and try out the exec again. Enter
process getfile

and let the program default to the requested file name of TEST FILE A.

The resulting screen output should be:

process getfile Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_0K

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMSEND
* ERROR: An error occurred during a CMSEND call

The return_code was set to CM_TPN_NOT_RECOGNIZED
Ready;

Figure 8. Output from PROCESS EXEC after Adding UCOMDIR NAMES Entry

We got the same error code of CM_TPN_NOT_RECOGNIZED again! The problem
this time resulted from not entering a command called SET COMDIR after changing
the UCOMDIR NAMES file. Basically, we did not let CMS know that we had
updated a communications directory. This should give you an idea of the variety of
reasons you can get this return code. It is hard to remember them without
experiencing them a few times.

26 z/VM: CPI Communications User's Guide



Starter Set Calls

— FYI: The SET COMDIR Command
The SET COMDIR command serves several functions. We are interested in
just a couple of them right now. SET COMDIR FILE defines the names of both
the system-level and the user-level communications directory files. The SET
COMDIR ON BOTH command enables symbolic destination name resolution.
The SYSPROF EXEC shipped with VM contains these statements, which are
automatically issued when CMS IPLs the virtual machine.

When the SET COMDIR commands are executed, CMS makes an image of
the two communications directories in memory. If you modify either of the
communications directories, you need to enter the SET COMDIR RELOAD
command so that a new image of the updated directories is made in memory.

For more information on the SET COMDIR command, see the [zZVM: CMS
|Commands and Utilities Reference,

To find out what communications directory files are in memory, you can enter the
QUERY COMDIR command.

If you modified an existing UCOMDIR NAMES file, enter:
set comdir reload

or if you had to create a UCOMDIR NAMES file, enter:
set comdir file user ucomdir names

and then execute the PROCESS EXEC again with
process getfile

Note: Now that we have an entry in the UCOMDIR NAMES file (and CMS knows
about it), CPI Communications will be able to tell that GETFILE refers to a
private resource manager. Until now, CPlI Communications considered
GETFILE to be a global resource, which is the default on VM when complete
side information is not provided. Thus, when a global resource with the name
GETFILE could not be located on the local system, it is assumed that the
resource is elsewhere in the TSAF collection. The allocation request is then
routed to the TSAF virtual machine on the local system. This helps to explain
the CM_PRODUCT_SPECIFIC_ERROR that some users may have gotten in
Step 2 the first time the program was executed with an Allocate call. Users
working on a system that is not part of a TSAF collection received an error
indicating that there was no TSAF virtual machine operating on their system.
If you received that error, you can start executing the program again.

Depending on how your server virtual machine is set up, the output may not appear

as we show it in this case. If it is not, do not be alarmed, just continue reading. Your
screen output should be:

Chapter 2. Starter Set CPl Communications Calls 27



Starter Set Calls

process getfile Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Figure 9. Output from PROCESS EXEC after SET COMDIR Command

The program appears to wait following the Initialize_Conversation call. In fact, our
application is hung because the partner virtual machine hasn’'t issued a SET
SERVER ON command. The allocation request, therefore, cannot be presented to
the server machine.

Note: If your results are different, it could be because there is already a SET
SERVER ON command in the PROFILE EXEC of the server virtual machine.
Read on through the next section to see if this seems to be the case. Also,
you may see different results if there are active APPC/VM conversations in
your virtual machine, for example, you may have an SFS directory accessed.
See FYI: SFS Directories Accessed on page [29 for this case.

The SET SERVER ON command will enable interrupts and allow CMS private
resource processing. Do not do anything from the REQUESTR user ID. Instead,
from the SERVR user ID, enter

set server on

That command allows the allocation request to be presented, and the SERVR
terminal should display the following message, with the appropriate time:

set server on

hh:mm:ss * MSG FROM SERVR : DMSIUH2027E Connection request on path 0
is severed for reason =7

Ready;

Figure 10. System Response after Entering SET SERVER ON Command

More information is now displayed at the REQUESTR terminal, as well. The
complete screen of information is:

28 z/VM: CPI Communications User's Guide



Starter Set Calls

process getfile Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMSEND
* ERROR: An error occurred during a CMSEND call

The return_code was set to CM_TPN_NOT_RECOGNIZED
Ready;

Figure 11. Output from PROCESS EXEC after Entering the SET SERVER ON Command
from the SERVR Console

Although the return_code is CM_TPN_NOT_RECOGNIZED once again, it appears
we are making progress because the output on the SERVR terminal indicates that
some type of interaction has occurred between the requester and server virtual
machines. But what caused the connection request to be severed, as noted in the
message on the server side?

By looking up message DMSIUH2027E in the|z/VM: CMS and REXX/VM Messages
(or entering help message dms2027e on the command line to have the

HELP Facility display the message), we can determine the meaning behind a
reason code of 7 for the sever message we received. In general, a code of 7
indicates that resource or user ID validation has failed. The response suggested in
the message description for code 7 mentions the $SERVER$ NAMES file.

“What's a $SERVER$ NAMES file?” you might ask. It is another special CMS
NAMES file that a server virtual machine uses to control access to the private
resources it controls. Knowing this, you no doubt realize that the reason for the
failure of our program is that we have not supplied an entry in the partner’s
$SERVER$ NAMES file for the resource to which we want to connect.

Now seems like an appropriate time to focus our attention on the server application.

We will start writing our server program and create a $SERVER$ NAMES entry to
see if that helps the Send_Data (CMSEND) call to complete successfully.

Chapter 2. Starter Set CPl Communications Calls 29



Starter Set Calls

— FYI: SFS Directories Accessed
If your results are different from those on page you may have active
APPC/VM conversations in your virtual machine similar to the following.

hh:mm:ss * MSG FROM SERVR : DMSIUH2027E Connection request on

path 2 is severed for reason = 6
Ready;

More information is now displayed at the REQUESTR terminal, as well. The
complete screen of information is:

process getfile Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMSEND
* ERROR: An error occurred during a CMSEND call

The return_code was set to CM_TPN_NOT_AVAILABLE_NO_RETRY
Ready;

By looking up message DMSIUH2027E in the |z/VM: CMS and REXX/VM
[Messages and Codes| (or entering help message dms2027e on the command
line to have the HELP Facility display the message), we can determine that
the SET SERVER ON command needs to be issued.

Preparing the SERVR Virtual Machine

We need to create or modify four files on the SERVR virtual machine. One is the
PROFILE EXEC. Another is the TEST FILE that’'s being requested. The third is the
$SERVER$ NAMES file. And the fourth is the transaction program that corresponds
to the name GET, which we provided in the UCOMDIR NAMES file of the
REQUESTR virtual machine.

Modifying the PROFILE EXEC File
We need to add these three commands to the PROFILE EXEC to prepare the
virtual machine to manage private resources:

SET SERVER ON
SET FULLSCREEN OFF
SET AUTOREAD OFF

The SET SERVER ON command enables CMS private resource processing. The
SET FULLSCREEN OFF command ensures that CMS session services are
deactivated. The SET AUTOREAD OFF command prevents CMS from issuing a
console read immediately after command execution. This prevents the SERVR
virtual machine from hanging when it gets autologged.

Complete the changes to the PROFILE EXEC, file it, and then run it by entering
profile

30 z/vM: CPI Communications User's Guide



Starter Set Calls

to put the new commands into effect.

Creating TEST FILE

Now we need to create the file we are requesting to have sent to us. Use TEST for
the file name and FILE for the file type. Include a couple of lines of text in the file,
such as:

This is the first line of the requested file.
This is the second line of the requested file.

Creating the $SERVER$ NAMES File

The program we will be writing soon for the server will be a private resource
manager. VM controls access to a private resource through a special CMS NAMES
file called $SERVER$ NAMES. This file contains the names of private resources
and user IDs (virtual machines) that are allowed to connect to them.

Note: You can create or change your $SERVER$ NAMES file using the NAMES
command with the SERVER option. See the NAMES command usage notes
in the [zZVM: CMS Commands and Ultilities Reference| for more information.

When an allocation request is received for a private resource, CMS checks the
server virtual machine’s $SSERVER$ NAMES file for an entry that matches the
private resource name specified as the target of the partner’s allocation and
determines if the requesting user ID is authorized to allocate to the private
resource. If the user ID is authorized, CMS invokes the private resource with the
resource name passed as a parameter. If the user ID is not authorized, the
requester receives an allocation error of CM_SECURITY_NOT_VALID.

The $SERVER$ NAMES file has three tags:
Tag What Value the Tag Specifies

:nick. Specifies the name of the private resource (1-8 characters). This is the
same value specified on the :tpn. tag in the requesting virtual machine’s
UCOMDIR (or SCOMDIR) NAMES file.

:1ist. Specifies the users that are authorized for the private resource. This list can
be individual user IDs, nicknames contained in a standard NAMES file that
might refer to groups of users, or an * (asterisk) that specifies that any
requester can connect to this private resource.

:module.
Specifies the name of the resource manager program for the private
resource specified in the nickname field. This value is the name of a CMS
module or exec that is to be invoked after connection authorization has
been determined. If a value is not specified for the :module. tag, the value
on the :nick. tag is used. So, the :module. tag can be omitted if the
:nick. entry is identical to the CMS-invokable name of the private resource
manager.

Let’s create the $SSERVER$ NAMES file and include the following information:

:nick.GET :1ist.REQUESTR
:module.SENDBACK

The GET value for the :nick. tag represents the name of the private resource.
REQUESTR for the :1ist. tag value indicates that REQUESTR is the only user ID
authorized to access this resource (if you used a different user ID for the
REQUESTR virtual machine, be sure to specify the name you used here). The

Chapter 2. Starter Set CPl Communications Calls 31



Starter Set Calls

:module. tag value SENDBACK is the name of the resource manager; this
corresponds to the name of the transaction program that is to be invoked.

Note that the value specified for the :tpn. tag in UCOMDIR NAMES on the
requester user ID is used as an index into the server's $SERVER$ NAMES file. For
this reason, the values for both the :tpn. tag of UCOMDIR NAMES and the :nick.
tag of $SERVER$ NAMES must match, as shows.

REQUESTR SERVR
| |

PROCESS CPI | =mmmmmmmmmm e CPI SENDBACK

EXEC COMM. COMM. EXEC
UCOMDIR NAMES $SERVER$ NAMES

:nick.GETFILE tnick.GET
:Tuname.*USERID SERVR :Tist.REQUESTR
:tpn.GET :moduTe.SENDBACK

Figure 12. Relationship between UCOMDIR and $SERVER$ NAMES Files

Creating the SENDBACK EXEC File

The previous section indicated that the name of the PROCESS EXEC’s partner
program is SENDBACK. As was done in the requester application, begin
SENDBACK EXEC with a REXX comment line (/* */) followed by the EXECIO
routine to process and load the CMREXX COPY file.

The SENDBACK EXEC should initially contain the following lines (you can use the
copy you made at the end of Step 1—or copy the PROCESS EXEC file now—and
then change the first comment and remove the lines of code not listed here):

/* SENDBACK EXEC - Sample server application. */
e */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
S */

address cpicomm
signal on error

Ty Ly Py Sy Sy Sy Yy S S RS */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
T S */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end
GetOut:

exit
J e e e L Subroutines -----------mmmmm */
TraceParms:
P */

32 z/vM: CPI Communications User's Guide



Starter Set Calls

/* Display parameters and their values as passed to this subroutine.x/

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' vreturn_code is' cm_return_code.return_code
otherwise
Sayll
end
end

parameter 'is' value(parameter)

return

Error:

say
say '* ERROR: REXX has detected an error'

say ' The return code variable RC was set to' rc
signal GetOut

ErrorHandler:
Ty Py Sy Sy Sy Sy Sy Ry Sy Sy S S */
/* Report routine that failed and the error return code. */
J e mm e e e */
parse arg routine_name

say

say '* ERROR: An error occurred during a' routine_name 'call'’

say ' The return_code was set to' cm_return_code.return_code

signal GetOut

Step 4. The Accept_Conversation (CMACCP) Call

The first CPI Communications routine we want to call from the SENDBACK EXEC
is Accept_Conversation (CMACCP). The Accept_Conversation call is solely
responsible for accepting incoming conversation requests. Like
Initialize_Conversation (CMINIT), Accept_Conversation sets a number of
conversation characteristics to default values (which we will discuss later) and
assigns a conversation ID.

The values of the conversation_type and sync_level conversation characteristics are
derived from the incoming allocation request and cannot be changed. Other
conversation characteristics (such as receive_type and send_type) are set to their
default values, but can be changed by Set calls anytime after issuing the
Accept_Conversation call. The “Conversation Characteristics” section in the
|Common Programming Interface Communications Reference lists these
characteristics and their default values.

Here is the format for Accept_Conversation:

CALL CMACCP(conversation_ID, output
return_code) output

Chapter 2. Starter Set CPl Communications Calls 33



Starter Set Calls

Output Parameters

Both parameters on Accept_Conversation are for output. The conversation_ID
parameter returns the conversation identifier assigned to the conversation by CPI
Communications. This identifier will be used on all CPI Communications calls that
follow on this conversation.

An additional point concerning the conversation_ID is that its value is not based on
the value of its communications partner's conversation_ID. The conversation_ID
only relates to the side of the conversation on which it was returned, either from an
Initialize_Conversation call or an Accept_Conversation call. In other words, each
side of the conversation gets its own conversation ID.

The values for return_code on an Accept_Conversation call that are of interest to
us are:
CM_OK (0)
indicates that the conversation has been accepted and the local program
has entered Receive state.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that an error unique to the VM product has occurred. Check the
CPICOMM LOGDATA file for a summary of the error.
CM_PROGRAM_STATE_CHECK (25)
indicates that no incoming conversation exists.

Results of the Call

When return_code indicates CM_OK, the conversation enters Receive state and
various conversation characteristics are initialized to their default values.

Adding CMACCP to Our Server Program

Now add the Accept_Conversation call to your SENDBACK EXEC. Again, we will
want to examine the CPI Communications return_code parameter after each CPI
Communications call as part of our minimal error checking. We will also want to
display the results of the call execution.

The SENDBACK EXEC should now have the following lines in it:

/*:::===============================================================*/
/+* SENDBACK EXEC - Sample server application. */
[*===============================s========s=s========s=sss====s=s=s=s========k/
S */
/* Set up REXX environment for program-to-program communications x/
/* and enable error trapping of REXX errors. */
ey */

address cpicomm
signal on error

== === —— ... */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
T Sy S Sy S Sy Sy USSRy S Sy S */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

S */
/* Accept the incoming conversation. */
T */

'CMACCP conversation_ID return_code’

say; say 'Routine called: CMACCP'

if (return_code == CM_0K) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID return_code’

34 z/vM: CPI Communications User's Guide



Starter Set Calls

GetOut:
exit

Now file the exec, and execute it. From the SERVR virtual machine console, enter
sendback

Your results should be:

sendback
Routine called: CMACCP

* ERROR: An error occurred on a CMACCP call
The return_code was set to CM_PROGRAM_STATE_CHECK

Ready;

Figure 13. Output Resulting from Execution of SENDBACK EXEC

Instead of CM_OK, the return code was CM_PROGRAM_STATE_CHECK. As we
mentioned earlier, CM_PROGRAM_STATE_CHECK returned on an
Accept_Conversation call means that no incoming conversation request was
present. In simple terms, we did not start the PROCESS EXEC from the
REQUESTR virtual machine, so there was no allocation request waiting to be
accepted.

This time, run the PROCESS EXEC from the REQUESTR user ID, and you will see
output at both terminals. After entering

process getfile

the results from the REQUESTR user ID should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready

Figure 14. Output from PROCESS EXEC Showing Step 4 Results

The results from the SERVR user ID should be:

Chapter 2. Starter Set CPl Communications Calls 35



Starter Set Calls

Routine called: CMACCP
conversation_ID is 00000000
return_code is CM_OK

Ready;

Figure 15. Output from SENDBACK EXEC Showing Step 4 Results

We have finally established a conversation between the two applications! CMS
automatically started our server application based on information in the $SERVER$
NAMES file. But while the Accept_Conversation call appears to have completed
successfully, there is a problem on the requester side with the Send_Data call. The
return_code value of CM_RESOURCE_FAILURE_NO_RETRY arises because our
server program terminates after it issues the Accept_Conversation call without first
deallocating the conversation. Because the conversation was not explicitly
deallocated, the termination is reported to the requester as an error indicating that
the partner resource is no longer available.

We will be adding the Deallocate (CMDEAL) routine to our application a little later.
But now, look at the next step for the server application in the starter set programs
overview table|§|, the Receive (CMRCV) call.

Step 5. The Receive (CMRCV) Call

The Receive (CMRCV) call receives information from an established conversation.
The information received can be a data record, conversation status, or both.

The format for Receive is:

CALL CMRCV(conversation_ID, input
buffer, output
requested_length, input
data_received, output
received_length, output
status_received output
request_to_send_received, output
return_code) output

Input Parameters

Use the conversation_ID parameter to identify the conversation for which you want
to issue this call. For SENDBACK EXEC, we will want to specify the value returned
on the Accept_Conversation call.

For the requested_length parameter, we will specify the maximum amount of data
that the program is prepared to receive with this Receive call. The range of valid
requested_length values is from 0 to 32767. Remember, the amount of data that
can be received by a single Receive call is limited by the value specified for the
requested_length parameter.

Output Parameters

We use the buffer parameter to specify the variable that will hold the received data.
The buffer will contain data only when return_code is set to CM_OK or
CM_DEALLOCATED_NORMAL and data_received is set to a value indicating that
at least some data was received. The buffer will not contain any data if
data_received is set to CM_NO_DATA_RECEIVED.

36 z/VM: CPI Communications User's Guide



Starter Set Calls

The data_received parameter returns a value indicating whether the program
received data. This parameter contains a value only when return_code is set to
CM_OK or CM_DEALLOCATED_NORMAL. The possible data_received values that
are of interest to us are:
CM_NO_DATA_RECEIVED (0)
indicates that no data was received.
CM_COMPLETE_DATA_RECEIVED (2)
indicates that a complete data record or the last remaining portion of the
record was received.
CM_INCOMPLETE_DATA_RECEIVED (3)
indicates that less than a complete data record was received. When the
program receives CM_INCOMPLETE_DATA_RECEIVED for the
data_received value, it should issue additional Receive (CMRCYV) calls until
an indication of CM_COMPLETE_DATA_RECEIVED is reported.

The received_length parameter returns the amount of data, in bytes, received by
the program. The received_length parameter is not given a value when data is not
received.

The status_received parameter returns a value that indicates the conversation
status. It contains a value only when the return_code parameter is set to CM_OK.
Valid values of interest to us for status_received are:
CM_NO_STATUS_RECEIVED (0)
No status received; data may be present.
CM_SEND_RECEIVED (1)
The remote program’s end of the conversation has entered Receive state.
The local program can now send data.
CM_CONFIRM_RECEIVED (2)
The remote program has sent a confirmation request requesting the local
program to respond by issuing a Confirmed call. The local program must
respond by issuing Confirmed, Send_Error, or Deallocate with
deallocate_type set to CM_DEALLOCATE_ABEND.
CM_CONFIRM_SEND_RECEIVED (3)
The remote program’s end of the conversation has entered Receive state
with confirmation requested. The local program must respond by issuing
Confirmed, Send_Error, or Deallocate with deallocate_type set to
CM_DEALLOCATE_ABEND. Upon issuing a successful Confirmed call, the
local program can send data.

The request_to_send_received parameter returns an indication of whether the
remote program issued a Request_To_Send (CMRTS) call.

The return_code parameter values of interest to us now include:

CM_OK (0)
indicates that the Receive call completed successfully.

CM_DEALLOCATED_ABEND (17)
indicates that the remote program or the remote LU issued a Deallocate
with deallocate_type set to CM_DEALLOCATE_ABEND. The conversation
is now in Reset state.

CM_DEALLOCATED_NORMAL (18)
indicates that the remote program issued a Deallocate call with
deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL or
CM_DEALLOCATE_FLUSH. If deallocate_type is
CM_DEALLOCATE_SYNC_LEVEL, the sync_level is CM_NONE. The
conversation is now in Reset state.

Chapter 2. Starter Set CPl Communications Calls 37



Starter Set Calls

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates that an error unique to the VM product has occurred. Check the
CPICOMM LOGDATA file for a summary of the error.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or
requested_length specifies a value greater than 32767.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in an appropriate state to issue the
Receive call.

CM_RESOURCE_FAILURE_NO_RETRY (26)
indicates that a failure occurred that caused the conversation to be
terminated prematurely or the remote program ended without deallocating
the conversation. The VM appendix to the |Common Programming lnten‘ace{
[Communications Reference lists more specific possible explanations for this
return code. The condition is not temporary. The conversation is in Reset
state.

CM_RESOURCE_FAILURE_RETRY (27)
indicates that a failure occurred that caused the conversation to be
terminated prematurely. This could occur if the TSAF virtual machine
encountered a problem during its processing or if the TSAF link went down.
The condition may be temporary so the program can retry the allocation
request. The conversation is in Reset state.

Results of the Call
For our purposes at this time, when return_code indicates CM_OK, the

conversation enters or remains in Receive state. Other results are possible in
various other scenarios; refer to the Receive call description in the [Commo

|Programming Interface Communications Referencelfor other results.

Adding a Receive (CMRCV) Loop to Our Server Program
Before calling Accept_Conversation, the conversation (from the server virtual
machine’s perspective) is in Reset state. Upon completion of that call, the
conversation is in Receive state, so we can now receive the data that the
PROCESS program is trying to send.

We will need to choose a value for the requested_length parameter. Because the
only data that this program is going to receive is the name of the requested file, set
the requested_length variable to 20, which should allow for the largest possible file
name in VM.

The starter set programs table [9 indicates that we will be issuing the Receive calls
from a loop in the server exec. We want to put the Receive call in a loop so our
program will be able to avoid any dependency on a certain number of Receive
calls. That way, it will be able to handle varying record lengths and receive data and
status on either the same or separate Receive calls.

Both the Receive and Send_Data routines have a parameter called buffer, so our
TraceParms subroutine needs to be able to distinguish between the two. Our
program will display a received buffer whose length is returned by received_length
and a buffer that was sent whose length is contained in send_length. So, we will
use receive_buffer in place of buffer for the Receive call. But when TraceParms
displays the parameter contents, we will still use buffer to label our output.

38 z/vM: CPI Communications User's Guide



Starter Set Calls

— FYI: The LEFT Function in REXX

Before adding the Receive call to the SENDBACK EXEC, we will point out that
when a REXX program calls Receive in VM, the buffer parameter upon return
from Receive will have a size of 32767 bytes. Therefore, if the SAY instruction
is used to display the contents of the buffer, the data received will be
displayed along with pad characters for the remainder of the 32767 bytes.

To display only the data that was received on this call, we can take advantage
of the REXX function LEFT, which will return the leftmost characters of a
character string for a specified length. The best length to supply is the one
returned on the Receive call itself, namely received_length.

Now add the Receive call and related instructions to your SENDBACK EXEC. The

exec should have the following lines in it:

'CMACCP conversation_ID return_code'

say; say 'Routine called: CMACCP'

if (return_code -= CM_0OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID return_code'

/* Start a Receive loop.

/* Receive data, status, or both from conversation partner.

requested_file =
requested_length = 20
do until (CMRCV_return_code -= CM_0K)

'CMRCV conversation_ID receive_buffer requested_length',
'data_received received_length status_received',
'request_to_send_received return_code’

CMRCV_return_code = return_code

say; say 'Routine called: CMRCV'

select

when (CMRCV_return_code = CM_O0K) then
do
call TraceParms 'conversation_ID receive_buffer',
'requested_length data_received',
'received_length status_received',

'request_to_send_received return_code'

if (data_received -= CM_NO_DATA_RECEIVED) then
do

receive_buffer

requested_file

end
end
otherwise
call ErrorHandler 'CMRCV'
end
end
GetOut:
exit
[Hm e m e Subroutines -----------ccmmmmmo—o

left(receive_buffer,received_length)
requested_file || receive buffer

*/

======*/

______ */

*/

______ */

...... */

*/
*/

Chapter 2. Starter Set CPI Communications Calls

39



Starter Set Calls

TraceParms:

S */
/* Display parameters and their values as passed to this subroutine.*/
[ m e e */

parse arg parmlist
do word num = 1 to words(parmlist)
parameter = word(parmlist,word _num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'receive_buffer') then
say ' buffer is' left(receive_buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
otherwise
sayll
end
end

parameter 'is' value(parameter)

return

File the exec and execute the PROCESS EXEC from the REQUESTR user ID by
entering

process getfile

Your results from the REQUESTR user ID should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_0K

Routine called: CMSEND
conversation_ID is 00000000
buffer is TEST FILE A
send_length is 11
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_0K
Ready;

Figure 16. Output from PROCESS EXEC Showing Step 5 Results

Your results from the SERVR user ID should be:

40 z/vM: CPI Communications User's Guide



Starter Set Calls

Routine called: CMACCP
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is TEST FILE A
requested length is 20
data_received is CM_COMPLETE_DATA_RECEIVED
received_length is 11
status_received is CM_NO_STATUS_RECEIVED
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
* ERROR: An error occurred during a CMRCV call

The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 17. Output from SENDBACK EXEC Showing Step 5 Results

The final return_code value of CM_RESOURCE_FAILURE_NO_RETRY on the
SERVR user ID indicates that the partner program terminated abnormally. We will
continue to ignore this error for the time being.

A couple of other output parameters from the server program’s Receive call are of
interest. The server program successfully received the name of the requested file in
buffer. The data_received value of CM_COMPLETE_DATA_RECEIVED informs us
that we received a complete data record. And the values for status_received and
request_to_send_received indicate that neither status nor a request-to-send
notification was received on the call.

Before the contents of the requested file can be sent to the partner program, the
direction of the conversation needs to be reversed so that the SENDBACK EXEC in
the SERVR virtual machine is in Send state. Because the partner in Send state
controls the conversation, only it can reverse the direction. We will also need to
prepare the PROCESS EXEC to receive the TEST FILE data.

Step 6. Adding a Receive (CMRCV) Loop to Our Requester Program

You can also use Receive to change the conversation state from Send to Receive
state. When the Receive call is issued from Send state with receive_type set to its
default value of CM_RECEIVE_AND_WAIT, the local system sends any buffered
information to the remote program. The partner is notified by receipt of a
status_received value of CM_SEND_RECEIVED that it may begin sending data.
The local conversation’s switch into Receive state occurs when the Receive call
completes.

Switching states in this manner will be useful to us because the PROCESS EXEC
will have to call Receive anyway to get the information that the server will be
sending to it.

The number and length of data lines in TEST FILE is not known to the requester, so
there may be no way to determine how much data will be available to be received.
It is important to remember that the length of data records in the context of
communications programs does not generally coincide with the logical record length
of the lines or records of a file. The records (lines) in the file whose contents our

Chapter 2. Starter Set CPl Communications Calls 41



Starter Set Calls

program will be sending to another user may be 80 bytes long, but the data records
used by the communications program sending the data may be 2KB while the data
records received at the other end of the conversation may be 4KB long. These
length values are quite arbitrary and are based on the requirements for a particular
application.

Because our programs are very simple and we want to demonstrate how the
various CPl Communications calls work together, we will establish the convention of
sending and receiving 80-byte data records. In our particular case, these records
will coincide with the records of TEST FILE.

The PROCESS EXEC could receive the data by issuing multiple Receive calls. By
calling Receive from within a loop, however, the application can handle this situation
by coding only a single call to Receive. The first time through the loop, the Receive
call will change the state and, when it becomes available, receive the first 80-byte
data record sent by the server. Subsequent passes through the loop will receive the
rest of the records of the file.

Using a record size of 80 bytes will not be the best approach for all applications. In
this case, each Receive will return one complete line of the requested file, but the
overhead of multiple Receive calls will not be appropriate for some situations.
Setting the send and receive lengths to larger values would overcome this potential
drawback.

The starter set programs table |9 shows that the requester application will deallocate
the conversation after it has finished receiving data from the server. Because we
are adding Receive to the PROCESS EXEC inside a loop, we will need to decide
when the looping should be terminated so the Deallocate call can be made.

After sending all the contents of TEST FILE to the requester, the server will switch
its end of the conversation back to Receive state. The requester will be notified of
this change through the status_received parameter, which will be set to
CM_SEND_RECEIVED. The receipt of this status, then, will be a signal for the
requester to end the Receive loop.

Within the loop, the requester will need to process the incoming data. Let’s use
EXECIO to add each data record to a file called OUTPUT LOGFILE. Of course, you
could choose any name you like.

Here are the contents of PROCESS EXEC at this point:

[rmmmmmmmmmmmmmmm ooy
/* PROCESS EXEC - Sample file requester application. */
[¥======================s=s=sossssssssssssssssssssssssssssssssssssook/
}* __________________________________________________________________ */
/* Send the name of the file being requested to the partner program.x/
J e m e e e */

buffer = fname ftype fmode

send_length = length(buffer)

'CMSEND conversation_ID buffer send length',
'request_to_send_received return_code'

say; say 'Routine called: CMSEND'

if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'

call TraceParms 'conversation_ID buffer send_length',

'request_to_send_received return_code'

Ty Ay Sy Yy Sy Sy Yy S RS */
/* Start a Receive loop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */

42 z/vM: CPI Communications User's Guide



Starter Set Calls

/* entered Receive state at its end of the conversation (noted by =*/
/* receipt of CM_SEND_RECEIVED */
T */
complete_line = "'

requested_length = 80

do until (status_received = CM_SEND_RECEIVED)

Ty gy gy S */
/* Receive information from the conversation partner. */
Ty Sy gy gy Sy */

'CMRCV conversation_ID receive_buffer requested_length',
'data_received received_length status_received’,
'request_to_send_received return_code’

say; say 'Routine called: CMRCV'

select

when (return_code = CM_OK) then
do
call TraceParms 'conversation_ID receive_buffer',
'requested_length data_received',
'received_length status_received',
'request_to_send_received return_code'
if (data_received -= CM_NO_DATA_RECEIVED) then
do
receive_buffer = left(receive_buffer,received_length)
complete_line = complete_line || receive_buffer

end
if (data_received = CM_COMPLETE_DATA_RECEIVED) then
do
S S Sy Sy S ySS Sy RS Sy S —— */
/* Use EXECIO to write the data to OUTPUT LOGFILE A */
/* and reset the complete_line variable to nulls. */
T P */

address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS',
'STRING' complete_line

complete_line =

end
end
otherwise
call ErrorHandler 'CMRCV'
end
end
GetQut:
exit
[Hm e Subroutines ----------mmmmmm */
TraceParms:
g */
/* Display parameters and their values as passed to this subroutine.x/
ey */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' left(receive_buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received

Chapter 2. Starter Set CPI Communications Calls

43



Starter Set Calls

otherwise
say ' ' parameter 'is' value(parameter)
end
end

return

File the exec, and try out our changes. From a command line at the REQUESTR
virtual machine, enter

process getfile

The REQUESTR side results should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMSEND
conversation_ID is 00000000
buffer is TEST FILE A
send_length is 11
request to send received is CM_REQ TO SEND NOT RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is
requested_length is 80
data_received is CM_NO DATA RECEIVED
received_length is 0
status_received is CM_SEND_RECEIVED
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK
Ready;

Figure 18. Output from PROCESS EXEC Showing Step 6 Results

The results from the SERVR user ID should be:

44 z/vM: CPI Communications User's Guide



Starter Set Calls

Routine called: CMACCP
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is TEST FILE A
requested length is 20
data_received is CM_COMPLETE_DATA_RECEIVED
received_length is 11
status_received is CM_NO_STATUS_RECEIVED
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is
requested_length is 20
data_received is CM_NO_DATA_RECEIVED
received_length is 0
status_received is CM_SEND_RECEIVED
request_to _send received is CM_REQ _TO SEND NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
* ERROR: An error occurred during a CMRCV call

The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 19. Output from SENDBACK EXEC Showing Step 6 Results

Several new interactions that are worth examining occurred between the programs.

After PROCESS EXEC sent the name of the desired file to the partner, it entered
the new Receive loop. The Receive call issued by the requester from Send state
sent a notification that its partner could begin to send data. The server program was
presented with that send notification on its second Receive call, which was
indicated by the status_received value of CM_SEND_RECEIVED.

Now, here is where it gets interesting. You will have to trust us on this for the
moment, but when the server program was presented with the status_received
value of CM_SEND_RECEIVED, the server’s side of the conversation entered
Send state. Because the server program is also executing a Receive loop, it issued
another Receive call. Because the server issued this Receive call from Send state,
send control for the conversation was passed back to the requester! (Yes, the
conversation’s direction was switched again before any data could be sent by the
server.)

At this point, the requester's Receive completed. And you will note that the
status_received parameter was set to CM_SEND_RECEIVED, which is the
condition that completes the requester’s Receive loop. The requester’s program
then ends, which is reflected to the server program by the return_code of
CM_RESOURCE_FAILURE_NO_RETRY.

Now that the server is receiving the change-of-direction notification, we are ready to
update the SENDBACK EXEC to send the requested file contents to the requester.

(And we will need to keep the server in Send state long enough to accomplish that

task.)

Chapter 2. Starter Set CPl Communications Calls 495



Starter Set Calls

Step 7. Adding a Send_Data (CMSEND) Loop to Our Server

We will set up a Send_Data loop in the SENDBACK EXEC similar to the Receive
loop in the PROCESS EXEC. As we mentioned in the discussion we will
assume 80-byte data records. Again, this approach may not be the best approach
for all applications, because the overhead of multiple Send_Data calls may not be
appropriate. It may be far more practical to use data records large enough to send
an entire file at once.

The requester exec expects the server to turn the conversation around when it
finishes sending the contents of the file, so issue a Receive (CMRCYV) call following
the Send_Data loop. Issuing the Receive will place the server’s end of the
conversation in Receive state and notify the requester that it has entered Send
state again.

It seems that calling a Send subroutine from within the Receive loop will handle our
situation. The only time that the server program will get send control for the
conversation is when the requester program is ready to receive the file contents.
So, a status_received value of CM_SEND_RECEIVED will be the indication for our
server application that it is time to send the file.

The SENDBACK EXEC should now have the following lines in it:

[¥==============s=sossssossmsossssossssossssossssosossossssossssossoy/
/* SENDBACK EXEC - Sample server application. */
f#=============s=s=smsssmsmsmsssmsssssosssssssssssssssssssssssssssoskf
}* __________________________________________________________________ */
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
2 */

requested _file = "'
requested length = 20
do until (CMRCV_return_code —-= CM_0K)

'CMRCV conversation_ID receive_buffer requested_Tength',
'data_received received_length status_received',
'request_to_send_received return_code'

CMRCV_return_code = return_code

say; say 'Routine called: CMRCV'

select

when (CMRCV_return_code = CM_OK) then
do
call TraceParms 'conversation_ID receive_buffer',
'requested_length data_received',
'received_length status_received',
'request_to_send_received return_code'
if (data_received —-= CM_NO_DATA RECEIVED) then
do
receive_buffer
requested _file
end
if (status_received = CM_SEND_RECEIVED) then
call SendFile

left(receive_buffer,received length)
requested file || receive buffer

end
otherwise
call ErrorHandler 'CMRCV'
end
end
GetOut:
exit
[Hmmmm e Subroutines ==--------mmmmmm e */

46 z/VM: CPI Communications User's Guide



Starter Set Calls

SendFile:

T */
/* Read the contents of the requested file and send each line of */
/* the file to the partner program. */
S */

address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index = 1 to line.0
buffer = Tine.index
send_length = length(buffer)
'CMSEND conversation_ID buffer send_length',
'request_to_send_received return_code’
say; say 'Routine called: CMSEND'
if (return_code ~= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms 'conversation_ID buffer send_length’,
'request_to_send_received return_code’

end

return

TraceParms:
ey */
/* Display parameters and their values as passed to this subroutine.x/
2y */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' left(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' Teft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send received is',
cm_request_to_send_received.request_to_send_received
otherwise
say ' ' parameter 'is' value(parameter)
end
end

return

File the SENDBACK EXEC. Now that both execs have been updated, enter
process getfile

from the REQUESTR user ID. PROCESS EXEC will keep issuing the Receive call
from the loop until all the data has been received. As each line of TEST FILE is
received into the requester’s buffer parameter, it will be displayed.

The results on the REQUESTR virtual machine should be:

Chapter 2. Starter Set CPl Communications Calls 47



Starter Set Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMSEND
conversation_ID is 00000000
buffer is TEST FILE A
send_length is 11
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is This is the first line of the requested file.

requested_length is 80

data_received is CM_COMPLETE_DATA_RECEIVED
received_length is 80

status_received is CM_NO_STATUS_RECEIVED
request_to_send_received is CM_REQ_TO SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is This is the second line of the requested file.

requested length is 80

data_received is CM_COMPLETE_DATA_RECEIVED

received length is 80

status_received is CM_NO_STATUS_RECEIVED
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is
requested_length is 80
data_received is CM_NO_DATA_RECEIVED
received_length is 0
status_received is CM_SEND_RECEIVED
request_to_send received is CM_REQ _TO SEND NOT_RECEIVED
return_code is CM_OK
Ready;

Figure 20. Output from PROCESS EXEC Showing Step 7 Results

Congratulations! You have just successfully requested and received a small file’s
worth of information from a file server using the starter set of SAA CPI
Communications routines.

The lines displayed for CMRCV could be repeated a number of times depending on
the size of the TEST FILE you created. We have written our program to assume
that when the status_received value is CM_SEND_RECEIVED, all of the file
contents have been received. (In reality, however, this value indicates only that this
end of the conversation is back in Send state.) Also at this point, the contents of
TEST FILE have been written to the OUTPUT LOGFILE on the REQUESTR user

48 z/VM: CPI Communications User's Guide



Starter Set Calls

ID. Note that our application does not preserve certain file characteristics of the
original file, such as logical record length (LRECL) and record format (RECFM),

when it creates the new file on the REQUESTR user ID.

This time, the final routine call from PROCESS EXEC produces a return_code of

CM_OK because the requester is the first of the two execs to terminate. The server
exec, however, is waiting for information from its conversation partner, so we would

expect the final routine in SENDBACK EXEC to complete with the familiar

return_code value of CM_RESOURCE_FAILURE_NO_RETRY. We should not see

that return code after we add the Deallocate (CMDEAL) call, but let us see if it
shows up this time as we are expecting.

The results from the SERVR user ID should be:

Routine called: CMACCP
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is TEST FILE A
requested_length is 20
data_received is CM_COMPLETE_DATA_RECEIVED
received_length is 11
status_received is CM_NO_STATUS_RECEIVED
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is
requested_length is 20
data_received is CM_NO_DATA_RECEIVED
received_length is 0
status_received is CM_SEND_RECEIVED
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_0K

Routine called: CMSEND
conversation_ID is 00000000
buffer is This is the first line of the requested file.

send_length is 80
request_to send received is CM_REQ TO SEND NOT RECEIVED
return_code is CM_OK

Routine called: CMSEND
conversation_ID is 00000000
buffer is This is the second line of the requested file.

send_length is 80
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
* ERROR: An error occurred during a CMRCV call

The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 21. Output from SENDBACK EXEC Showing Step 7 Results

Chapter 2. Starter Set CPI Communications Calls

49



Starter Set Calls

Not surprisingly, the final return_code value was set to
CM_RESOURCE_FAILURE_NO_RETRY.

Now, according to our starter set programs table @ there is only one step left, and
that is to deallocate the conversation from the requester exec. This step requires
adding a Deallocate call to the PROCESS EXEC. When SENDBACK has finished
sending the contents of TEST FILE, control returns to its Receive loop. A Receive
call is then issued from Send state to reverse the direction of the conversation and
receive the deallocation notification.

Step 8. The Deallocate (CMDEAL) Call

The Deallocate (CMDEAL) call ends a conversation. When the Deallocate call
completes successfully, the conversation_ID is no longer assigned.

The format for Deallocate is:

CALL CMDEAL(conversation_ID, input
return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameter
The return_code is dependent on the deallocate_type and sync_level conversation
characteristics. Using the default values of CM_DEALLOCATE_SYNC_LEVEL and
CM_NONE, respectively, for those characteristics, the possible values for the
return_code variable are:
CM_OK (0)

indicates that the conversation deallocation completed successfully.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates that an error unique to the VM product has occurred. Check the

CPICOMM LOGDATA file for a summary of the error.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned.
CM_PROGRAM_STATE_CHECK (25)

indicates that the conversation is not in Send or Send-Pending state.

Results of the Call

After the Deallocate call completes successfully, the conversation is considered to
have entered Reset state, basically meaning that there is nothing left of the
conversation.

Adding CMDEAL to Our Requester Program
Let’'s add the Deallocate (CMDEAL) call to the PROCESS EXEC. The complete
exec should now have the following lines in it:

/*:::===============================================================*/
/* PROCESS EXEC - Sample file requester application. */
#============sossossossossossoosoosoossossossossoosoosoossossosooook/
arg sym_dest _name fname ftype fmode /* get user's input x/
ey */
/+ If a file was not specifically requested, set up a default. */
]y */
if (fname = '') then
do
fname = 'TEST'
ftype = 'FILE'

50 z/vM: CPI Communications User's Guide



Starter Set Calls

fmode = 'A'
end
say 'Requesting the file: ' fname ftype fmode
Ty */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
L PRt */

address cpicomm
signal on error

e */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
e */

address command 'EXECIO * DISKR CMREXX COPY % (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

Ty */
/* Initialize the conversation. */
g */

'CMINIT conversation_ID sym dest_name return_code'

say; say 'Routine called: CMINIT'

if (return_code -= CM_0K) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID sym dest name return_code'

ey */
/* Allocate the conversation. */
g */

'CMALLC conversation_ID return_code'

say; say 'Routine called: CMALLC'

if (return_code -= CM_0K) then call ErrorHandler 'CMALLC'
call TraceParms 'conversation ID return_code'

e */
/* Send the name of the file being requested to the partner program.x/
g */

buffer = fname ftype fmode

send_length = Tength(buffer)

'CMSEND conversation_ID buffer send_length',
'request_to _send received return_code'

say; say 'Routine called: CMSEND'

if (return_code -= CM_0K) then call ErrorHandler 'CMSEND'

call TraceParms 'conversation_ID buffer send_length',

‘request_to_send_received return_code'

S */
/* Start a Receive Toop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by =*/
/* receipt of CM_SEND_RECEIVED */
/* for status_received) or until a return_code value other than */
/* CM_OK is returned. The record lTength of the incoming data x/
/* is assumed to be 80 bytes, or less. */
/2y */

complete_line =
requested_Tength = 80
do until (status_received = CM_SEND_RECEIVED)

2y */
/* Receive information from the conversation partner. x/
T S Sy Sy S Sy S Sy Sy S S S S */

'CMRCV conversation_ID receive_buffer requested_length',
'data_received received_length status_received',
'request_to_send_received return_code’

say; say 'Routine called: CMRCV'

select

when (return_code = CM_OK) then
do
call TraceParms 'conversation_ID receive_buffer',
'requested_length data_received',
'received_length status_received',

Chapter 2. Starter Set CPl Communications Calls 51



Starter Set Calls

'request_to_send_received return_code'
if (data_received -= CM_NO_DATA_RECEIVED) then
do
receive_buffer = left(receive_buffer,received_length)
complete line = complete line || receive buffer

end
if (data_received = CM_COMPLETE_DATA_RECEIVED) then
do
/2y */
/* Use EXECIO to write the data to OUTPUT LOGFILE A */
/* and reset the complete_line variable to nulls. */
S S U S S S S S S S S S SSS */

address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS',
'STRING' complete_line

complete_line =

end
end
otherwise
call ErrorHandler 'CMRCV'
end
end
e */
/* Deallocate the conversation normally. */
P */

'CMDEAL conversation_ID return_code’

say; say 'Routine called: CMDEAL'

if (return_code == CM_0K) then call ErrorHandler 'CMDEAL'
call TraceParms 'conversation_ID return_code'

GetQut:

exit
[Hm e m Subroutines ==--------mmmmmm */
TraceParms:
e */
/* Display parameters and their values as passed to this subroutine.*/
S S S S Sy S SRy Sy S S SSS S SSS S —— */

parse arg parmlist
do word num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' lTeft(buffer,send_Tlength)
when (parameter = 'receive buffer') then
say ' buffer is' lTeft(receive buffer,received length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received

otherwise
say ' ' parameter 'is' value(parameter)

end
end
return
Error:
]y */
/* Report error when REXX special variable RC is not 0. */
gy */

52 z/vM: CPI Communications User's Guide



Starter Set Calls

say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc

signal GetOut

ErrorHandler:

g */
/* Report routine that failed and the error return code. x/
Sy */
parse arg routine_name

say

say '# ERROR: An error occurred during a' routine_name 'call'

say ' The return_code was set to' cm_return_code.return_code

signal GetOut

File the exec and, once more, enter
process getfile

from the REQUESTR user ID command line.

The results on the REQUESTR virtual machine should be:

Chapter 2. Starter Set CPl Communications Calls 53



Starter Set Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_ID is 00000000
sym_dest_name is GETFILE
return_code is CM_OK

Routine called: CMALLC
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMSEND
conversation_ID is 00000000
buffer is TEST FILE A
send_length is 11
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is This is the first line of the requested file.

requested_length is 80

data_received is CM_COMPLETE_DATA_RECEIVED
received_length is 80

status_received is CM_NO_STATUS_RECEIVED
request_to_send_received is CM_REQ_TO SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is This is the second line of the requested file.

requested length is 80

data_received is CM_COMPLETE_DATA_RECEIVED

received length is 80

status_received is CM_NO_STATUS_RECEIVED
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is
requested_length is 80
data_received is CM_NO_DATA_RECEIVED
received_length is 0
status_received is CM_SEND_RECEIVED
request_to_send received is CM_REQ _TO SEND NOT_RECEIVED
return_code is CM_OK

Routine called: CMDEAL
conversation_ID is 00000000
return_code is CM_OK

Ready;

Figure 22. Output from PROCESS EXEC Showing Step 8 Results

The results on the SERVR side of the conversation should be:

54 z/vM: CPI Communications User's Guide



Starter Set Calls

Routine called: CMACCP
conversation_ID is 00000000
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is TEST FILE A
requested length is 20
data_received is CM_COMPLETE_DATA_RECEIVED
received_length is 11
status_received is CM_NO_STATUS_RECEIVED
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
conversation_ID is 00000000
buffer is
requested_length is 20
data_received is CM_NO_DATA_RECEIVED
received_length is 0
status_received is CM_SEND_RECEIVED
request_to _send received is CM_REQ _TO SEND NOT_RECEIVED
return_code is CM_OK

Routine called: CMSEND
conversation_ID is 00000000
buffer is This is the first Tine of the requested file.

send_length is 80
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMSEND
conversation_ID is 00000000
buffer is This is the second line of the requested file.

send_Tlength is 80
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMRCV
* ERROR: An error occurred during a CMRCV call

The return_code was set to CM_DEALLOCATED_NORMAL
Ready;

Figure 23. Output from SENDBACK EXEC Showing Step 8 Results

The return_code value of CM_DEALLOCATED_NORMAL indicates to the server
that its partner deallocated the conversation. The conversation now has entered
Reset state on the server’s end as well.

Although the return_code is not set to CM_OK, a value of
CM_DEALLOCATED_NORMAL does not reflect an error condition. Rather, it is the
indication of a normal termination.

Let’'s quickly update the SENDBACK EXEC so we will not flag this condition as an
error.

Here is the complete updated exec:

Chapter 2. Starter Set CPl Communications Calls 55



Starter Set Calls

/* Set up REXX environment for program-to-program communications
/* and enable error trapping of REXX errors.

address cpicomm
signal on error

/* Equate pseudonyms to their integer values based on the
/* definitions contained in the CMREXX COPY file.

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.
do index = 1 to pseudonym.0

interpret pseudonym.index
end

'CMACCP conversation_ID return_code'

say; say 'Routine called: CMACCP'

if (return_code -= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID return_code'

/* Start a Receive loop.
/* Receive data, status, or both from conversation partner.

requested_file = "'
requested length = 20
do until (CMRCV_return_code —-= CM_0K)

'CMRCV conversation_ID receive_buffer requested_Tength',
'data_received received_length status_received',
'request_to_send_received return_code'

CMRCV_return_code = return_code

say; say 'Routine called: CMRCV'

select

when (CMRCV_return_code = CM_OK) then
do
call TraceParms 'conversation_ID receive_buffer',
'requested_length data_received',
'received_length status_received',
'request_to_send_received return_code'
if (data_received == CM_NO_DATA RECEIVED) then
do
receive_buffer = left(receive_buffer,received length)
requested file = requested file || receive buffer
end
if (status_received
call SendFile
end
when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
do
call TraceParms 'conversation_ID receive_buffer',
'requested_length data_received',
'received_length status_received',
'request_to_send_received return_code'
say; say 'Conversation deallocated by partner'
end
otherwise
call ErrorHandler 'CMRCV'
end
end

CM_SEND_RECEIVED) then

GetOut:
exit

56 z/vM: CPI Communications User's Guide

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/



Starter Set Calls

T e Subroutines =-------mmmmmm e x/
SendFile:

[ m e e e e */
/* Read the contents of the requested file and send each Tine of */
/* the file to the partner program. */
g */

address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index =1 to line.0
buffer = line.index
send_length = length(buffer)
"CMSEND conversation_ID buffer send_length',
'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code == CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms 'conversation ID buffer send length',
'request_to_send_received return_code’
end

return

TraceParms:

2y */
/* Display parameters and their values as passed to this subroutine.x/
g */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' left(receive_buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm status_received.status_received
when (parameter = 'request_to_send_received') then

say request_to _send received is',
cm_request_to_send_received.request_to_send_received
otherwise
say ' ' parameter 'is' value(parameter)
end

end
return
Error:
L PRt */
/* Report error when REXX special variable RC is not 0. */
ey */
say

say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc
signal GetOut

ErrorHandler:

Ty PSS S Sy Sy S S Sy S Sy Sy S S S S — */
/* Report routine that failed and the error return code. */
S S S S S S Sy U S S S IS S */

parse arg routine_name

Chapter 2. Starter Set CPI Communications Calls

57



Starter Set Calls

say
say '# ERROR: An error occurred during a' routine_name 'call'
say ' The return_code was set to' cm_return_code.return_code

signal GetOut

We will not rerun the programs for this change. If you do, the results for the last
Receive call displayed at the SERVR terminal should report that neither data nor
status was received, and the return_code parameter will be set to
CM_DEALLOCATED_NORMAL. Because of our update to the SENDBACK EXEC,
this return_code will no longer cause an error message to be displayed.

— FYI: Receiving Partial Records
If you recall, when we added the Receive loop to the PROCESS EXEC in step
6, we only wrote the data being received to our output file when the
data_received parameter had a value of CM_COMPLETE_DATA_RECEIVED.
Because TEST FILE was composed of 80-character records and we specified
80 as the requested_length for the Receive call, the results always showed
complete data being received. So, our program never had to receive just part
of a line.

This works because both of our user IDs are on the same system. When the
partners are on different systems, this is not likely to happen because of
buffering at the LUs.

To see what would happen if partial records were received, you might want to
temporarily change the requested_length to a lower number. A
requested_length of 20, for example, will require that the Receive routine be
called four times to completely receive 80 characters worth of data from the
partner (on the same system). The first three calls to Receive will complete
with a data_received value of CM_INCOMPLETE_DATA_RECEIVED, and on
the fourth call, that parameter will be set to
CM_COMPLETE_DATA_RECEIVED. If you check the OUTPUT LOGFILE, you
will find that the partial records were correctly processed by the Receive loop.

In general, you should always write applications in such a way that they can
handle partial records.

This brings us to the end of our introduction to the starter set of SAA CPI
Communications routines. Now that you have built the sample programs and
basically understand how they work together, you may find it beneficial to review
the final summary section. It contains a flow diagram that shows how our sample
programs would work in an SNA network.

In the next chapter we will begin covering some more advanced routines. We will
be using the same two user IDs and adding further routine calls to our two execs,
so please do not erase them. It might also be worthwhile to save a backup copy of
each program at the end of each chapter.

Summary with

Flow Diagram

Now that we see how the various CPl Communications starter set calls can be
used to establish a conversation and exchange data, we can review what we have
learned while seeing how the |[Common Programming Interface Communicationd

Reference| describes a conversation flow.

58 z/vM: CPI Communications User's Guide



Starter Set Calls

A Word about the Flow Diagrams

In the flow diagram we will be examining (Figure 24 on page 61)), vertical dotted
lines indicate the components involved in the exchange of information between
systems. The horizontal arrows indicate the direction of the flow for that step. The
numbers lined up on the left side of the flow are reference points to the flow and
indicate the progression of the calls made on the conversation. These same
numbers correspond to the numbers under the Step heading of the text description
that follows.

The call parameter lists shown in the flows are not complete; only the parameters of
particular interest to the flows being discussed are shown.

This flow diagram does not assume that both partners are on the same VM system.
A complete discussion of all possible timing scenarios is beyond the scope of this
book.

Flow Diagram for Starter Set Conversation

Step

[Figure 24 on page 61| shows the flow for the conversation developed in. this
chapter.

The steps shown in [Figure 24 on page 61| are:

Description

To communicate with its partner program, PROCESS must first establish a conversation.

PROCESS uses the Initialize_Conversation call to tell CPI Communications that it wants to:

* |Initialize a conversation

 ldentify the conversation partner (using sym_dest_name)

» Ask CPI Communications to establish the identifier that the program will use when referring
to the conversation (the conversation_ID).

Upon successful completion of the Initialize_Conversation call, CPI Communications assigns
a conversation_ID and returns it to PROCESS. The program must store the conversation_ID
and use it on all subsequent calls intended for that conversation.

No errors were found on the Initialize_Conversation call, and the return_code is set to
CM_OK.

Two major tasks are now accomplished:

* CPI Communications has established a set of conversation characteristics for the
conversation, based on the sym_dest_name, and uniquely associated them with the
conversation_ID.

» The default values for the conversation characteristics have been assigned. (For example,
the conversation now has conversation_type set to CM_MAPPED_CONVERSATION.)
PROCESS asks that a conversation be started with an Allocate call using the
conversation_ID previously assigned by the Initialize_Conversation call.
If a session between the LUs is not already available, one is activated. PROCESS and
SENDBACK can now have a conversation. A return_code of CM_OK indicates that the
Allocate call was successful and the LU has allocated the necessary resources to the
program for its conversation. PROCESS’s conversation is now in Send state and PROCESS
can begin to send data.
Note: In this example, the error conditions that can arise (such as no sessions available) are
not discussed.

Chapter 2. Starter Set CPl Communications Calls 59



Starter Set Calls

Step

Description

Had 3

H and H

B and Hl

through [

£l and B

PROCESS sends data with the Send_Data call and receives a return_code of CM_OK. Until
now, the conversation may not have been established because the conversation startup
request may not be sent until the first flow of data. In fact, any number of Send_Data calls
can be issued before CPI Communications actually has a full buffer, which causes it to send
the startup request and data. Step [ shows a case where the amount of data sent by the
first Send_Data is greater than the size of the local LU’s send buffer (a system-dependent
property), which is one of the conditions that triggers the sending of data. The request for a
conversation is sent at this time.

After the conversation is established, the remote program’s system takes care of starting
SENDBACK. The conversation on SENDBACK'’s side is in Reset state and SENDBACK
issues a call to Accept_Conversation, which places the conversation in Receive state. The
Accept_Conversation call is similar to the Initialize_Conversation call in that it equates a
conversation_ID with a set of conversation characteristics. SENDBACK, like PROCESS in
Step H ., receives a unique conversation_ID that it will use in all future CPI Communications
calls for that particular conversation.

After its end of the conversation is in Receive state, SENDBACK begins whatever processing
role it and PROCESS have agreed upon. In this case, SENDBACK accepts data with a
Receive call.

PROCESS could continue to make Send_Data calls (and SENDBACK could continue to
make Receive calls), but, for the purposes of our example, assume that PROCESS only
wanted to send the data contained in its initial Send_Data call.

After sending some amount of data (an indeterminate number of Send_Data calls),
PROCESS issues the Receive call while its end of the conversation is in Send state. This
call causes the remaining data buffered at REQUESTR to be sent and permission to send to
be given to SENDBACK. PROCESS’s end of the conversation is placed in Receive state,
and PROCESS waits for a response from SENDBACK.

SENDBACK issues a Receive call in the same way it issued the previous Receive call.
SENDBACK receives not only the last of the data from PROCESS, but also a
status_received parameter set to CM_SEND_RECEIVED. The value of
CM_SEND_RECEIVED notifies SENDBACK that its end of the conversation is now in Send
state.

As a result of the status_received value, SENDBACK issues a Send_Data call. The data from
this call, on arrival at REQUESTR, is returned to PROCESS as a response to the Receive it
issued in Step .

At this point, the flow of data has been completely reversed and the two programs can
continue whatever processing their logic dictates.

To give control of the conversation back to PROCESS, SENDBACK would simply follow the
same procedure that PROCESS executed in Step [HY.

PROCESS and SENDBACK continue processing. SENDBACK sends data and PROCESS
receives the data.

SENDBACK issues a Receive call from Send state to change its state back to Receive.
PROCESS receives the last of the data along with notification that SENDBACK has changed
states.

PROCESS issues a Deallocate call to send any data buffered by the local system and
release the conversation. The Receive call issued by SENDBACK in step can now
complete.

The return_code of CM_DEALLOCATED_NORMAL tells SENDBACK that the conversation is
deallocated. Both SENDBACK and PROCESS finish normally.

Note: Only one program should issue Deallocate; in this case it was PROCESS. If
SENDBACK had issued Deallocate after receiving CM_DEALLOCATED_NORMAL, an error
would have resulted.

60 zVM: CPI Communications User's Guide



REQUESTR

SERVR

PROCESS CPI
EXEC Communications

:

Initialize Conversation (sym_dest_name)

>
>,

=

conversation_ID, return_code=CM_0OK

<
.«

.Allocate(conversation_ID).

>,

return_code=CM_0K

<
. €

data) . data

.Send Data(conversation_ID, conversation startup request, .

CPI SENDBACK
Communications EXEC

. (SENDBACK is started by .

>
>

return_code=CM_0K

EEeaNEoO0 OO
R .

=

permission to send,

B, node services)

Accept_Conversation

<
<

conversation_ID, return_code=CM_OK

>

>,

. Receive(conversation ID).

. data, return_code=CM_0OK .

>,

i . Receive(conversation ID). remainder of data, if any . Receive(conversation_ID).
11 8 >, > . <

. (PROCESS waits for . data, .
- . data from SENDBACK) status_received=CM_SEND_RECEIVED
12 B . >,

. data, return_code=CM_OK . data Send_Data(conversation_ID, data)
.= “ . .

. return_code=CM_0K
14 |8 >

. Receive(conversation ID). data Send_Data(conversation ID, data)
. >.< .

. data, return_code=CM_OK . return_code=CM_0K
L . permission to send, . >,

. Receive(conversation_ID). remainder of data, if any . Receive(conversation_ID).
. B, .

. data, .

.status_received=CM_SEND_RECEIVED
. :

.Deallocate(conversation_ID) conversation end
. >, >, .

return_code=CM_OK . data, .

20 I return_code=CM_DEALLOCATED_NORMAL
. (Both execs complete normally) .

Figure 24. Flow Diagram for Starter Set Conversation

Chapter 2. Starter Set CPI Communications Calls

61



62 z/VM: CPI Communications User's Guide



Chapter 3. Advanced CPI Communications Calls

In[Chapter 2, “Starter Set CPI Communications Calls,”| we developed a simple pair
of communications programs to pass a file from one virtual machine to another.
Communications programming is not always so straightforward, however. For
situations demanding more flexibility, CPI Communications provides
advanced-function calls that let programs modify conversation characteristics and
synchronize activities between partners.

In this chapter we will discuss and use several of the advanced CPI
Communications routines that are used for synchronization and control, for
modifying, and for examining conversation characteristics.

Overview of Advanced CPl Communications Calls

You can use the advanced calls to do more specialized processing than is possible
using the default set of characteristic values. The advanced calls provide more
capabilities for synchronization and monitoring of data. For example, the Set calls
let a program modify conversation characteristics, and the Extract calls let a
program examine the conversation characteristics that have been assigned to a
given conversation.

Note: Advanced CPI Communications calls can be used with the starter set calls,
but are being introduced separately in this tutorial for the sake of simplicity.

The advanced function calls can be logically divided into three categories:
» Synchronization and control

» Modifying conversation characteristics

» Examining conversation characteristics.

The following tables list the calls in each category, giving both the pseudonyms and
callable names.

Calls Used for Synchronization and Control

Pseudonym Call Description Page

Confirm CMCFM Sends a confirmation and waits for a reply

Confirmed CMCFMD Sends a confirmation reply

Flush CMFLUS Explicitly sends any information held in the
local send buffer

Prepare_To_Receive CMPTR Changes conversation state from Send to
Receive

Request_To_Send CMRTS Sends notification to partner that local
program has data to send

Send_Error CMSERR Notifies partner of an error that occurred 107
during the conversation

Test_Request_To_Send_ CMTRTS Determines whether partner program has  |122

Received requested to send data

Calls Used for Modifying Conversation Characteristics

Pseudonym Call Page

Set_Conversation_Type CMSCT

© Copyright IBM Corp. 1991, 2009 63



Advanced Calls

Pseudonym Call Page
Set_Deallocate_Type CMSDT
Set_Error_Direction CMSED
Set_Fill CMSF
Set_Log_Data CMSLD 120
Set_Mode_Name CMSMN 120
Set_Partner_LU_Name CMSPLN [i13
Set_Prepare_To_Receive_Type CMSPTR
Set_Receive_Type CMSRT
Set_Return_Control CMSRC
Set_Send_Type CMSST
Set_Sync_Level CMSSL
Set_TP_Name CMSTPN

Calls Used for Examining Conversation Characteristics

Pseudonym Call Page
Extract_Conversation_State CMECS
Extract_Conversation_Type CMECT 105
Extract_Mode_Name CMEMN [i1d
Extract_Partner_LU_Name CMEPLN
Extract_Sync_Level CMESL

Using Advanced Set Calls

shows in pseudocode style how we will be building on our programs in this

chapter. The new calls we will be adding are denoted in boldface.

Table 2. Overview of Sample Programs with Advanced Set Calls

REQUESTR User ID

SERVR User ID

Initialize_Conversation

(Set_Conversation_Type)

Set_Partner_LU_Name

Set_TP_Name

Allocate

Send_Data

if performing confirmation
Confirm

Set_Prepare_to_Receive_Type

Prepare_To-Receive

-Receive loop-
do until send control returned
Receive
if confirmation requested
Confirmed

end
Deallocate

Accept_Conversation

Extract_Conversation_Type

if conversation type is basic
Send_Error

-Receive loop-
do until notified of deallocation
Receive
if confirmation requested
Confirmed
if send control received

-Send loop-
do until all of file is sent
if last data record
Set_Send_Type
Send_Data
end

end

64 z/vM: CPI Communications User's Guide




Advanced Calls

The Set_Conversation_Type call is shown in parentheses in the table because we
remove it after examining the consequences of its use. In addition, two more calls
(Set_Deallocate_Type and Extract_Conversation_State) are included in
subroutines that we will add to keep the flow a little cleaner.

You will notice that we have added calls to the programs we created in (Chapter 2,
['Starter Set CPl Communications Calls,” on page 9./Each will be discussed and
added to the execs we started in that chapter.

— FYI: Tidying Up
It is time to clean up the PROCESS and SENDBACK execs by removing most
of the parameters on the calls to our TraceParms subroutine. (You might want
to make a backup copy of both execs before continuing.) Very carefully
remove all the parameters from these calls except for the following two
Receive parameters:

e 'data_received'
* 'status_received'.

In most cases, the call to TraceParms will be left with no parameters, but this
will not hurt anything. As we add new calls to our program, we will be tracing
other parameters in this chapter and we do not want the console log to be too
long. From now on, we will remove extra parameters after we have seen the
results of the call.

The ErrorHandler routine will continue to display any return_code values other
than CM_OK or CM_DEALLOCATED_NORMAL. We will leave the say
statements identifying the called routine.

Now, just to make sure you did not make any mistakes, after you have deleted
the unwanted parameters, re-execute the execs to make sure they complete
successfully. As you recall, you only need to execute the PROCESS EXEC,
providing the parameter GETFILE as the symbolic destination name.

The Extract_Conversation_State (CMECS) Call

The Extract_Conversation_State (CMECS) call returns a value indicating the local
program’s current conversation state for a given conversation.

This routine is meant for use when a program is working with protected
conversations (conversations with the sync_Jlevel characteristic set to
CM_SYNC_POINT). It is also useful for debugging and error handling.

We can put the Extract_Conversation_State call to good use to help understand the
concept of conversation states. But first, let’s look at the parameters.

The format for Extract_Conversation_State is:

CALL CMECS(conversation_ID, input
conversation_state, output
return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Chapter 3. Advanced CPI Communications Calls 65



Advanced Calls

Output Parameters

The conversation_state parameter returns the current state of the conversation
identified by the input conversation_ID parameter. Possible values for this
characteristic are:

* CM_INITIALIZE_STATE (2)

» CM_SEND_STATE (3)

* CM_RECEIVE_STATE (4)

« CM_SEND_PENDING_STATE (5)

* CM_CONFIRM_STATE (6)

* CM_CONFIRM_SEND_STATE (7)

* CM_CONFIRM_DEALLOCATE_STATE (8)

« CM_DEFER_RECEIVE_STATEv (9)

« CM_DEFER_DEALLOCATE_STATE (10)

* CM_SYNC_POINT_STATE (11)

* CM_SYNC_POINT_SEND_STATE (12)

* CM_SYNC_POINT_DEALLOCATE_STATE (13)

See|Appendix B, “CPl Communications Conversation States,” on page 223 for more
information on the various conversation states.

The return_code parameter is a variable for returning the result of the call
execution. Possible values of interest to us are:
CM_OK (0)
indicates that the conversation state has been extracted.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file for a summary
of the error.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.

Results of the Call
Anything other than a return code of CM_OK yields a conversation_state value that
is undefined and should not be examined. This call does not cause a state change.

Adding CMECS to Both Our Programs

By adding an Extract_Conversation_State call to the TraceParms subroutine in both
of our programs, we will be able to monitor the conversation states on each side of
the conversation.

Let's add the new call. The only change is in the TraceParms subroutine, which
currently is identical in both of our execs, so we are just showing that section of the
program.

The TraceParms subroutine in both execs (PROCESS and SENDBACK) now
contains these lines:

TraceParms:

S */
/* Display parameters and their values as passed to this subroutine.x/
e */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_length)

66 z/VM: CPI Communications User's Guide



Advanced Calls

when (parameter = 'receive_buffer') then
say ' buffer is' Teft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send received is',
cm_request_to_send_received.request_to_send_received

otherwise
say ' ' parameter 'is' value(parameter)
end
end
Ty ey gy g S */
/* Extract the current conversation state of the local program. */
Ty Sy Sy Sy Y Sy Sy Ry Sy Sy S RS */

'CMECS conversation_ID conversation_state return_code
if (return_code = CM_OK) then
say ' conversation_state is =>',
cm_conversation_state.conversation_state

return

The Flow of a Conversation

This time as we review the progression of the conversation between our programs,

we will break the displayed output into sections, like snapshots of the conversation.

We want to watch for the relationship between the routine calls, the call results, and
the conversation states. Enter

process getfile
from the REQUESTR user ID and we will proceed.

Looking at the requester’s side of the conversation first, we see the following lines
displayed at the REQUESTR terminal:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_state is => CM_INITIALIZE STATE

Routine called: CMALLC
conversation_state is => CM_SEND_STATE

Figure 25. Results of First Two Calls from PROCESS EXEC

The requester’s first call is to Initialize_Conversation. The appropriate
communications directory is checked for side information and default values are set.
Upon completion of the Initialize_Conversation call, a conversation identifier is
returned to the program and the state of the conversation is changed from Reset to
Initialize state.

Initialize state can be considered a transition state. The program can now issue

Extract calls to view conversation characteristics and Set calls to override default
characteristics or values obtained from side information. So far, though, this is a

very one-sided conversation.

Chapter 3. Advanced CPI Communications Calls 67



Advanced Calls

After the Allocate call is issued, a connection (session in SNA communications
terminology) is established between the local and remote systems, if one does not
already exist, over which the conversation will flow. Then the conversation state
changes to Send state. The program can now send data on the conversation.

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Figure 26. Results of Next Two Calls from PROCESS EXEC

The requester sends the name of the file it is requesting to the server, and the
conversation remains in Send state. The side of the conversation in Send state
maintains control of the conversation until it changes the state or an error occurs.

This requester, in fact, does want to change states, which it accomplishes by calling
Receive. That action allows the partner to send data, which the requester then
receives. Not surprisingly, the requester’s side of the conversation has entered
Receive state.

Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED
conversation_state is => CM_SEND_STATE

Figure 27. Results of Next Two Receive Calls from PROCESS EXEC

Data reception continues. The last Receive call shown completes with
status_received of CM_SEND_RECEIVED. That status value switches the
conversation state back to Send state. The requester again controls the
conversation.

Routine called: CMDEAL
Ready;

Figure 28. Completion of PROCESS EXEC Execution

Having received the file from the server, the requester can terminate the
conversation by issuing a Deallocate call. As a result of deallocation, the
conversation identifier becomes unassigned. If the requester program tries to
extract the conversation state after the Deallocate, return_code would be set to
CM_PROGRAM_PARAMETER_CHECK because the specified conversation

68 z/VM: CPI Communications User's Guide




Advanced Calls

identifier no longer has any meaning. In addition, because the return_code is not
CM_OK, the conversation_state parameter value is undefined.

The conversation has returned to Reset state.

Viewing the conversation from the SERVR user ID, we will see:

Routine called: CMACCP
conversation_state is => CM_RECEIVE_STATE

Figure 29. Results of First Call from SENDBACK EXEC

The private server program is started and an Accept_Conversation call is made,
taking the server’s end of the conversation from Reset to Receive state. A
conversation identifier is also returned for the server. This conversation ID is not
related to the conversation ID on the other end of the conversation.

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_NO_DATA RECEIVED
status_received is CM_SEND_RECEIVED
conversation_state is => CM_SEND_STATE

Figure 30. Results of Next Two Calls from SENDBACK EXEC

The first Receive issued completes with receipt of the file name sent by the partner.
The conversation remains in Receive state until status_received is returned with a
value of CM_SEND_RECEIVED. The partner has given the server program control
of the conversation, which results in the conversation state change to Send state.

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMRCV
data_received is CM_NO DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner
Ready;

Figure 31. Completion of SENDBACK EXEC Execution

After responding to the requester by sending the contents of the requested file, the
server application calls Receive to return control to the requester. Although we did
not display it, the return_code on the last Receive call was
CM_DEALLOCATED_NORMAL, indicating that the partner deallocated the
conversation. (Notice that our correction to the server program in the previous

Chapter 3. Advanced CPI Communications Calls 69



Advanced Calls

chapter avoided an error message for this return_code value.) The conversation
identifier for the server’s side of the conversation becomes unassigned, and the
conversation enters Reset state.

— FYI: Flush (CMFLUS) Call Overview

The Flush (CMFLUS) call empties the send buffer of the local system (logical
unit or LU, meaning the node in the SNA network) for a given conversation.
When notified by CPlI Communications that a Flush has been issued, the local
LU sends any information it has buffered to the remote LU. The buffered
information can come from Allocate (CMALLC), Send_Data (CMSEND), and
Send_Error (CMSERR) calls.

To optimize transmissions between the conversation partners, the local LU
typically buffers the data from consecutive Send_Data calls until the local
buffer is full. The amount of data sufficient for transmission depends on the
characteristics of the session allocated for the conversation and may vary from
one session to another.

Using the Flush call can improve application performance when data in the
local buffer is needed by the partner for immediate processing. Also, issuing
Flush immediately after an Allocate call should ensure that the partner
program is started as soon as possible.

If the local LU has no information in its send buffer, nothing is transmitted to
the remote LU when Flush is called.

In general, however, Flush should be used sparingly. There is no need to call
it if the data is not required immediately by the partner program. If you need to
be sure your partner gets data or allocation information immediately, however,
and you are not changing states, it may be appropriate to call Flush so your
partner can begin processing.

We will not be adding the Flush call to either of our programs because it
would have no effect in our example scenario, but we wanted to introduce this
routine because several other CPI Communications routines that we will be
discussing can perform implicit flushes as part of their processing.

As we saw when we added the Extract_Conversation_State (CMECS) call to our
program, issuing a successful Receive (CMRCV) call from Send state really does
switch the local end of the conversation to Receive state. Another way to
accomplish that state change is to call the Prepare_To_Receive (CMPTR) routine.

The Prepare_To_Receive (CMPTR) Call

The Prepare_To_Receive (CMPTR) call changes a conversation from Send to
Receive state in preparation for receiving data. As a result of the
Prepare_To_Receive call, the local LU’s send buffer may be flushed.

One advantage of the Prepare_To_Receive call is that the calling program is not

held up waiting for the partner to respond with data or status, as would be the case
with the Receive call.

70 z/VM: CPI Communications User's Guide



Advanced Calls

The format for Prepare_To_Receive is:

CALL CMPTR(conversation_ID, input
return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameter
The possible values for the return_code parameter that are of interest to us are:
CM_OK (0)
indicates that the Prepare_To_Receive call completed successfully.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file for a summary
of the error.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.
CM_PROGRAM_STATE_CHECK (25)
can indicate several problems, but the most common error would be that
the program is not in Send or Send-Pending state.

Results of the Call
When return_code indicates CM_OK, the conversation enters Receive state.

Adding CMPTR to Our Requester Program

When programming with CPI Communications, several ways may be available to
implement the same function. For example, we can add a Prepare_To_Receive call
to our requester program to change the requester’s side of the conversation to
Receive state rather than letting one of the Receive (CMRCYV) calls do that.

Let's add the Prepare_To_Receive call to the PROCESS EXEC, immediately
following the Send_Data (CMSEND) call.

Note: As you add new code, remember to remove the extra parameters (keeping
only data_received and status_received) from the TraceParms calls from the
previous addition. The error routine will continue to display any return_code
values other than CM_OK or CM_DEALLOCATED_NORMAL.

Your exec should now have the following lines in it:

[¥===========================s====ssssssssssssssssssssssssssssssss=zk/
/* PROCESS EXEC - Sample file requester application. */
/*::================================================================*/
/*_.. ________________________________________________________________ */
/* Send the name of the file being requested to the partner program.x/
e */

buffer = fname ftype fmode

send_length = Tength(buffer)

'CMSEND conversation_ID buffer send_length',
'request_to_send_received return_code'

say; say 'Routine called: CMSEND'

if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'

call TraceParms

Ty ey ey gy gy g S */
/* Issue Prepare_To Receive to switch the conversation state from */
/* Send state to Receive state. */
T */

'CMPTR conversation_ID return_code'

Chapter 3. Advanced CPI Communications Calls 71



Advanced Calls

say; say 'Routine called: CMPTR'
if (return_code ~= CM_OK) then call ErrorHandler 'CMPTR'

ca

/*
/*
/*
/*
/*
/*
/*

complete_line =

re
do

11 TraceParms 'conversation_ID return_code'

Start a Receive loop. Receive calls will be issued until
notification that the partner has finished sending data and
entered Receive state at its end of the conversation (noted by
receipt of CM_SEND RECEIVED

for status_received) or until a return_code value other than
CM_OK is returned. The record length of the incoming data

is assumed to be 80 bytes, or Tess.

quested_length = 80
until (status_received = CM_SEND RECEIVED)

/* Receive information from the conversation partner.

ey

'CMRCV conversation_ID receive_buffer requested_Tength',
'data_received received_length status_received',
'request_to_send_received return_code'

After filing the exec and entering

pr

ocess getfile

the REQUESTR virtual machine results will be:

72 z/VM: CPI Communications User's Guide

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/



Advanced Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_state is =

\%

CM_INITIALIZE_STATE

Routine called: CMALLC
conversation_state is => CM_SEND_STATE

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMPTR
conversation_ID is 00000000
return_code is CM_OK
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND RECEIVED
conversation_state is => CM_SEND_STATE

Routine called: CMDEAL
Ready;

Figure 32. Execution Results after Adding CMPTR to PROCESS EXEC

And, the SERVR virtual machine results will be:

Chapter 3. Advanced CPI Communications Calls 73



Advanced Calls

Routine called: CMACCP
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED
conversation_state is => CM_SEND_STATE

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner
Ready;

Figure 33. Results from SENDBACK EXEC Execution

The same number of Receive calls are being issued now as before the
Prepare_To_Receive call was added, but the first Receive issued by the requester
is no longer serving the dual purpose of changing the conversation state and
receiving data.

Notice that the conversation state following the Prepare_To_Receive call is Receive
state.

The Set_Sync_Level (CMSSL) Call

The Set_Sync_Level (CMSSL) call sets the sync_level characteristic for a given
conversation and overrides the sync level assigned with the Initialize_Conversation
(CMINIT) call.

The sync_level characteristic specifies the level of synchronization processing
between the two programs. It determines whether the programs support no
synchronization, confirmation-level synchronization, or sync-point-level
synchronization.

Only a program initiating a conversation (using the Initialize_Conversation call) can
issue the Set_Sync_Level call. The call must be issued while in Initialize state,
prior to the Allocate (CMALLC) call for the specified conversation.

The format for Set_Sync_Level is:

CALL CMSSL(conversation_ID, input
sync_level input
return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation for which the
sync_level characteristic is to be changed.

74 z/vM: CPI Communications User's Guide



Advanced Calls

Use the sync_level parameter to specify the synchronization level that the local
and remote programs can use on the conversation. This characteristic can be set to
one of the following values:
CM_NONE (0)
No confirmation processing will occur on this conversation. The programs
will neither issue nor recognize any synchronization requests.
CM_CONFIRM (1)
Confirmation processing can be performed on this conversation. The
programs can issue calls and recognize returned parameters relating to
confirmation.
CM_SYNC_POINT (2)
The programs can perform sync point processing on this conversation. The
programs can issue calls to a synchronization point service, will recognize
returned parameters relating to sync point processing, and can perform
confirmation processing.

The use of CM_SYNC_POINT to synchronize the committing and backing
out of data updates is beyond the scope of this book.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)
indicates that the sync_level value has been changed.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned, the sync_level is
set to an undefined value, the specified sync_level conflicts with another
conversation characteristic, or the sync_level is set to CM_SYNC_POINT
and the local system does not support a synchronization point service.
CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state.

Results of the Call
A return code other than CM_OK results in no change to the sync_level
characteristic. This call does not cause a state change.

Adding CMSSL to Our Requester Program

Setting the sync_level to CM_NONE would have no effect on our program because
that is the default value assigned with the Initialize_Conversation call. We will not
be discussing sync point processing, so we will set the sync_level to
CM_CONFIRM.

Confirmation processing provides a chance for the program receiving data to let the
sender know whether the data is getting through and being processed. You can use
confirmation processing to provide checkpoints in an application.

Let’s add the Set_Sync_Level call to the requester application, immediately
following the Initialize_Conversation call. We will also add a console prompt so that
we can decide at run time whether we want to enable confirmation processing.

The PROCESS EXEC should now have the following lines:

[*===========================z==========z==========z==========z==s======k |
/* PROCESS EXEC - Sample file requester application. */
/%=================z=z=========z==ss=====sssssssss==ssssssssszzssssssssook

Chapter 3. Advanced CPI Communications Calls 75



Advanced Calls

'CMINIT conversation_ID sym_dest_name return_code'

say; say 'Routine called: CMINIT'

if (return_code -= CM_0K) then call ErrorHandler 'CMINIT'
call TraceParms

say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then

do

sync_level = CM_CONFIRM
'CMSSL conversation_ID sync_level return_code'
say; say 'Routine called: CMSSL'
if (return_code -= CM_0K) then call ErrorHandler 'CMSSL'
call TraceParms 'conversation_ID sync_level return_code'
say ' Confirmation processing enabled'

end

parse arg parmlist
do word _num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' lTeft(buffer,send_Tlength)
when (parameter = 'receive_buffer') then
say ' buffer is' lTeft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm status received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'sync_level') then

say sync_level is' cm_sync_level.sync_level
otherwise
say ' ' parameter 'is' value(parameter)
end
end

After filing the exec, enter

process getfile

and choose confirmation processing when the prompt is displayed.

76  z/VM: CPI Communications User's Guide

*/
*/

*/
*/
*/

*/
*/
*/

*/



Advanced Calls

The results on the REQUESTR user ID should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_state is => CM_INITIALIZE_STATE

Would you Tike confirmation processing? (Y/N)
Y

Routine called: CMSSL
conversation_ID is 00000000
sync_level is CM_CONFIRM
return_code is CM_0K
conversation_state is => CM_INITIALIZE_STATE
Confirmation processing enabled

Routine called: CMALLC
conversation_state is => CM_SEND_STATE

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMPTR
* ERROR: An error occurred during a CMPTR call

The return_code was set to CM_RESOURCE_FAILURE_NO_RETRY
Ready;

Figure 34. Results of Adding CMSSL Call to PROCESS EXEC

The results on the SERVR user ID will be:

Routine called: CMACCP
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM_SEND_ RECEIVED
conversation_state is => CM_CONFIRM_SEND STATE

Routine called: CMRCV
* ERROR: An error occurred during a CMRCV call

The return_code was set to CM_PROGRAM_STATE_CHECK
Ready;

Figure 35. Results from SENDBACK EXEC Execution

Even though our Set_Sync_Level call executed correctly, a subsequent call to
Prepare_To_Receive (CMPTR) failed with return_code set to
CM_RESOURCE_FAILURE_NO_RETRY.

The requester enabled confirmation processing, but the server program was not
prepared to handle that situation. We can look at confirmation processing as a
pause in the passing of data during which an exchange of confirmation information

Chapter 3. Advanced CPI Communications Calls 77



Advanced Calls

takes place. It is like an “aside” or a very short conversation within the main
conversation to make sure both partners are at the point in processing where they
are expected to be.

As it turns out, choosing confirmation processing by setting the sync_level
characteristic to CM_CONFIRM has implications for the Deallocate (CMDEAL) and
Prepare_To_Receive (CMPTR) calls. In fact, if not otherwise changed by the
specific Set calls, the default deallocate_type and prepare_to_receive_type values
(CM_DEALLOCATE_SYNC_LEVEL and CM_PREP_TO_RECEIVE_SYNC_LEVEL,
respectively) dictate the type of processing the Deallocate and Prepare_To_Receive
calls perform based on the sync level of the conversation.

What Prepare_To_Receive does when the prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and the sync_level characteristic is
CM_CONFIRM is to ask the partner to confirm that whatever data has been sent to
the partner has been received and processed by the partner. This results in a
change to the state of the conversation. After receiving the status_received value of
CM_CONFIRM_SEND_RECEIVED, the server is in Confirm-Send state, but
SENDBACK EXEC was not expecting to be in this state.

The Receive loop in SENDBACK EXEC did not check for a status_received value
of CM_CONFIRM_SEND_RECEIVED, and so continued executing by calling
Receive (CMRCV) again. Receive, however, cannot be called from Confirm-Send
state, so the call completed with a return_code of CM_PROGRAM_STATE_CHECK
and the program was terminated. The ending of the server application was in turn
reflected to the requester by the return_code value of
CM_RESOURCE_FAILURE_NO_RETRY on the Prepare_To_Receive (CMPTR)
call.

With confirmation processing we find that the conversation states we have been
using thus far are no longer adequate. Although all that probably seems a bit
confusing, it is not as bad as it may seem at first. The next section will help you to
determine which calls you can make from a particular state.

The State Table—-Finding Out Where You Can Go from Here

As you will recall from our discussion of a two-way radio conversation, states are
important to CPlI Communications because they help us to synchronize our
activities with those of our partner. Although the concept of conversation states is
helpful, the enforcement of that concept is what helps us write programs that work
correctly. As we have seen, it can get complicated trying to keep track of all the
states and which calls we can make from a given state at a particular time.

The state that a conversation is going to enter next can be readily determined by
examining the state table included as an appendix in the|Common Programming|
linterface Communications Reference. The state table also indicates which CPI
Communications calls can be issued while in a particular conversation state.

For a brief introduction to the state table, we have combined sections from several
real entries into a modified (and simplified) table of our own. Our table steps
through the part of SENDBACK EXEC'’s side of the conversation that we just
discussed, as it could be viewed from the state table’s perspective. As shown in
|Tab|e 3 on page 79|, the routines called by SENDBACK EXEC appear on the left
side of our table, and the conversation states appear along the top. The number
shown with the state name at the top of the column corresponds to the integer
value of that state.

78 z/VM: CPI Communications User's Guide



Advanced Calls

Table 3. State Transitions for SENDBACK EXEC CPI Communications Calls

Inputs Reset 1 Initialize 2 Send 3 Receive 4 Confirm-
Send 7
Accept_Conversation ! / / / /
[ok] 4
Receive(W) [pc] [sc] V' V' [sc]
[ok] {dr,no} 4 -
Receive(W) [pc] [sc] V' V' [sc]
[ok] {*,cs} 7 7
Confirmed [pc] [sc] [sc] [sc] V'
[oK] 3

The symbols and abbreviations that are used are all explained in the section

preceding the state table in the |Common Programming Interface Communicationd
We will discuss only those that we need for this example.

When the SENDBACK EXEC is started, no conversation exists, so the conversation
is said to be in Reset state, and the first routine that gets called is
Accept_Conversation. To determine what happens when Accept_Conversation is
called from Reset state, we need to examine the intersection of the corresponding
row and column of the state table. In our example, we find the symbol “I”, which
indicates that it is valid to call the specified routine while the conversation is in the
state shown at the top of the column. The “/” in the next column indicates that it is
impossible to call Accept_Conversation from Initialize state, which seems
reasonable because the accepting side of a conversation never enters Initialize
state.

Next, we want to check the state transition. The Accept_Conversation call
completes with a return_code of CM_OK, which is represented in the state table
with the symbol “[ok]”. By looking in the column of the state we are currently in
(Reset) and on the row reflecting the results of the call ([ok] under
Accept_Conversation), we can determine what state transition will occur. In our
case, we find a “4”, the integer value corresponding to Receive state. As we have
already seen, the conversation did in fact enter Receive state following the
completion of the Accept_Conversation call.

The rest of the conversation can be traced through the state table in a similar
fashion. We issue a Receive call from Receive state that completes with a
return_code of CM_OK and the receipt of data but not status ({dr,no}). The table
shows a “~”, indicating that the conversation remains in the current state of Receive
state.

A second Receive is issued, and it successfully completes with no data but a
status_received of CM_CONFIRM_SEND_RECEIVED ([ok] {*,cs}). The asterisk, in
this case, means CM_NO_DATA_RECEIVED. The “7” means that the conversation
now enters Confirm-Send state. This is where our program runs into trouble.
SENDBACK is expecting to receive either data or a status_received value of
CM_SEND_RECEIVED. Because the status_received value does not match, the
loop is executed again resulting in another Receive call. Having entered
Confirm-Send state, however, this end of the conversation is now expected to
either confirm that it has received and processed the data sent by its partner by
issuing a Confirmed (CMCFMD) call, or let its partner know that there is a problem
by issuing Send_Error (CMSERR) or Deallocate (CMDEAL) with the
deallocate_type set to CM_DEALLOCATE_ABEND. As the Receive call rows of the

Chapter 3. Advanced CPI Communications Calls 79



Advanced Calls

table show, calling Receive from Confirm-Send state results in a state check [sc],
which was reflected to SENDBACK EXEC by the return_code value of
CM_PROGRAM_STATE_CHECK.

For our purposes, it is adequate simply to issue a Confirmed call to tell the
requester side that we have received and processed the data successfully. We will
be discussing the Confirmed call shortly, but let’'s examine what effect that call will
have while we are looking at our example state table. If we add a Confirmed call
after the Receive, a return_code of CM_OK upon completion of that Confirmed call
will indicate that the conversation has entered state “3”, Send state. At that point,
SENDBACK will have send control for the conversation and will be free to send the
contents of the requested file.

Before we add a Confirmed call to our server application, though, let's continue our
discussion of confirmation processing and what that means to both sides of the
conversation.

Confirmation Processing

Now, let’s continue our introduction to confirmation-level synchronization with the
Confirm (CMCFM) and Confirmed (CMCFMD) calls. Because Confirmed
(CMCFMD) is used as a response to Confirm (CMCFM), we will cover both routines
before adding them to our programs.

The Confirm (CMCFM) Call

A program uses the Confirm (CMCFM) call to send a confirmation request to its
partner program and then to wait for a reply. If all is well, the partner responds with
a Confirmed (CMCFMD) call. These two calls working together can help programs
synchronize their processing of data.

The program can call the Confirm routine only when the conversation associated
with the specified conversation_ID has its sync_level characteristic set to
CM_CONFIRM or CM_SYNC_POINT.

Like Flush (CMFLUS), Confirm is another call that should be used only when it is
necessary, because it could adversely affect a program’s performance. Because the
program that issues Confirm must wait for a reply from its partner, the calling
program’s processing is suspended while it waits. If the partner fails to respond, the
program that issued Confirm is left waiting indefinitely.

A common use of Confirm is to verify that the partner has received, validated, or
processed data that was sent to it. Confirmed would be the affirmative response. If
the remote program detects an error, it can give a negative response by issuing
Send_Error (CMSERR) or Deallocate (CMDEAL) with deallocate_type set to
CM_DEALLOCATE_ABEND.

The format for Confirm is:

CALL CMCFM(conversation_ID, input
request_to_send_received, output
return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

80 z/VM: CPI Communications User's Guide



Advanced Calls

Output Parameters
The request_to_send_received parameter returns an indication of whether a
request-to-send notification has been received from the partner program. Possible
values are:

CM_REQ_TO_SEND_NOT_RECEIVED (0)

CM_REQ_TO_SEND_RECEIVED (1)

If a request-to-send notification was received, it means that the remote program has
requested that the local program’s end of the conversation enter Receive state,
which would place the remote program’s end of the conversation in Send state.

Note: When return_code indicates CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, request_to_send_received does not
contain a value.

The return_code values of interest to us are:
CM_OK (0)
indicates that the remote program replied Confirmed (CMCFMD).
CM_DEALLOCATED_ABEND (17)
usually indicates that the remote program deallocated the conversation with
deallocate_type set to CM_DEALLOCATE_ABEND, or the remote LU did so
because of a remote program abnormal-ending condition. The conversation
is in Reset state.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_ERROR_PURGING (22)
indicates that the remote program issued a Send_Error call and the
conversation for the remote program was in Receive or Confirm state. The
call may have caused information to be purged. Purging occurs when the
remote program issues Send_Error for a conversation in Receive state
before receiving all the information that the local program sent (all of the
information sent before the CM_PROGRAM_ERROR_PURGING return
code was reported to the local program).
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the
sync_level conversation characteristic is set to CM_NONE.
CM_PROGRAM_STATE_CHECK (25)
usually indicates that the conversation is not in Send or Send-Pending
state.

Allocation errors can also be returned on a Confirm call.

Results of the Call

When the return code is CM_OK (0):

» No state change occurs if the program that issued the call was already in Send
state.

* The conversation enters Send state if the program issued the call when the
conversation was in Send-Pending state.

The Confirmed (CMCFMD) Call

A program uses the Confirmed (CMCFMD) call to send a confirmation reply to its
partner program. The local program must have received a confirmation request
before it can issue this call.

Chapter 3. Advanced CPI Communications Calls 81



Advanced Calls

The format for Confirmed is:

CALL CMCFMD(conversation_ID, input
return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)
indicates that a confirmation reply has been sent to the partner program.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.
CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Confirm, Confirm-Send, or
Confirm-Deallocate state.

Results of the Call

A CM_OK return code affects the program state as follows:

» The conversation returns to Receive state if the program was in Confirm state
(received CM_CONFIRM_RECEIVED in the status_received parameter on the
preceding Receive call).

* The conversation enters Send state if the program was in Confirm-Send state
(received CM_CONFIRM_SEND_RECEIVED in the status_received variable on
the preceding Receive call).

* The conversation enters Reset state if the program was in Confirm-Deallocate
state (received CM_CONFIRM_DEALLOC_RECEIVED in the status_received
variable on the preceding Receive call).

Adding CMCFM and CMCFMD to Our Programs

Let’s add the Confirm call to the requester application immediately following the
Send_Data call that is issued to send the name of the file we are requesting. We
will add the Confirmed call to the Receive loop in the server application.

When the Confirm call completes successfully, we will know that the partner
application has started and that it has received the data. For our simple example,
we will not be validating the received data. Both programs will simply be responding
with Confirmed when any confirmation request is received.

Remember that the sync_level of CM_CONFIRM can affect the
Prepare_To_Receive (CMPTR) and Deallocate (CMDEAL) calls by making them
wait until the partner responds.

When confirmation processing is enabled, both programs will need to check for
confirmation requests. We encountered a problem with our programs the last time
we executed them for that reason, so we will also want to add a Confirmed call
inside the requester’s Receive call loop so the program can handle confirmation
processing.

The requester's PROCESS EXEC should now have the following lines:

#=======s====sossossossossossoosoosoossoossossosooosoosoossossosooookf
/* PROCESS EXEC - Sample file requester application. x/
Y,

82 z/VM: CPI Communications User's Guide



Advanced Calls

L PRt */
/* Send the name of the file being requested to the partner program.*/
ey */
buffer = fname ftype fmode
send_length = Tength(buffer)
'CMSEND conversation_ID buffer send_length',

'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms
P */
/* Confirm that partner has started and received the name of */
/* the requested file. */
£ O O U U O U U U U OO SO ST ST */
'CMCFM conversation_ID request_to_send_received’,

'return_code'
say; say 'Routine called: CMCFM'
if (return_code -= CM_OK) then call ErrorHandler 'CMCFM'
call TraceParms 'conversation_ID request_to_send_received’,

'return_code’

g */
/* Issue Prepare_To_Receive to switch the conversation state from =/
/* Send state to Receive state. */
ey */
'"CMPTR conversation _ID return_code'
say; say 'Routine called: CMPTR'
if (return_code -= CM_0K) then call ErrorHandler 'CMPTR'
call TraceParms
ey */
/* Start a Receive loop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by */
/* receipt of CM_SEND RECEIVED or CM_CONFIRM_SEND_RECEIVED */
/* for status_received) or until a return_code value other than */
/* CM_OK is returned. The record Tength of the incoming data x/
/* is assumed to be 80 bytes, or less. */
S */
complete_line = "'
requested_length = 80
do until (status_received = CM_SEND_RECEIVED) |,

(status_received = CM_CONFIRM_SEND_RECEIVED)
2y */
/* Receive information from the conversation partner. x/
[ Hm e e e e emc e e ———— */
'CMRCV conversation_ID receive_buffer requested_length',

'data_received received_length status_received',
'request_to_send_received return_code’
say; say 'Routine called: CMRCV'
select
when (return_code = CM_OK) then
do
call TraceParms 'data_received status_received',
if (data_received == CM_NO_DATA RECEIVED) then
do
receive_buffer = left(receive buffer,received length)
complete line = complete line || receive buffer
end
if (data_received = CM_COMPLETE_DATA RECEIVED) then
do
e e e e e nceeeee */
/* Use EXECIO to write the data to OUTPUT LOGFILE A */
/* and reset the complete_line variable to nulls. */
K m mm e e e e e */

address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS'
'STRING' complete Tine

Chapter 3. Advanced CPlI Communications Calls

B

83



Advanced Calls

complete_line =
end

/* Determine whether a confirmation request has been

/* received. If so, respond with a positive reply.

if (status_received = CM_CONFIRM_RECEIVED) |,
(status_received = CM_CONFIRM_SEND RECEIVED) |,
(status_received =
do

/* Issue Confirmed to reply to the partner.

J e m e el

'CMCFMD conversation_ID return_code’
say; say 'Routine called: CMCFMD'

CM_CONFIRM_DEALLOC_RECEIVED) then

*/
*/
*/

*/
*/

if (return_code ~= CM_OK) then call ErrorHandler 'CMCFMD'

call TraceParms 'conversation_ID return_code'
end
end
otherwise
call ErrorHandler 'CMRCV'
end
end

'CMDEAL conversation_ID return_code'

say; say 'Routine called: CMDEAL'

if (return_code -= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms

GetOut:
exit

/* Start a Receive loop.
/* Receive data, status, or both from conversation partner.

requested_file =
requested_length = 20
do until (CMRCV_return_code ~= CM_0K) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED)
"CMRCV conversation_ID receive_buffer requested_length',
'data_received received length status_received',
'request_to_send_received return_code’
CMRCV_return_code = return_code
say; say 'Routine called: CMRCV'
select
when (CMRCV_return_code = CM _OK) then
do
call TraceParms 'data received status_received'
if (data_received —-= CM_NO_DATA RECEIVED) the
do
receive_buffer
requested_file
end

84 z/vM: CPI Communications User's Guide

left(receive_buffer,received length)
requested file || receive buffer

*/
*/

*/
*/
*/

%/
*/
*/



Advanced Calls

J e e e */
/* Determine whether a confirmation request has been */
/* received. If so, respond with a positive reply. */
J R m m e e e */

if (status_received = CM_CONFIRM_RECEIVED) |,
(status_received = CM_CONFIRM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then

do
S S S Sy YU SRS Sy S Sy —— */
/* Issue Confirmed to reply to the partner. */
[ R e e e e */

'CMCFMD conversation_ID return_code'
say; say 'Routine called: CMCFMD'
if (return_code ~= CM_OK) then call ErrorHandler 'CMCFMD'
call TraceParms 'conversation_ID return_code'
end
if (status_received = CM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM_SEND_RECEIVED) then
call SendFile
else
if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
do
say; say 'Conversation deallocated by partner'
end
end
when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
do
call TraceParms 'data_received status_received'
say; say 'Conversation deallocated by partner'

end
otherwise
call ErrorHandler 'CMRCV'
end
end
GetOut:
exit
e L Subroutines =------mmmm o */

After filing both execs, start them up again by entering:
process getfile

and choose confirmation processing when prompted.

Here are the results displayed from the REQUESTR user ID’s side of the
conversation:

Chapter 3. Advanced CPI Communications Calls 85



Advanced Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
conversation_state is => CM_INITIALIZE_STATE

Would you Tike confirmation processing? (Y/N)
Y

Routine called: CMSSL
conversation_state is => CM_INITIALIZE_STATE
Confirmation processing enabled

Routine called: CMALLC
conversation_state is => CM_SEND_STATE

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMCFM
conversation_ID is 00000000
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_0K
conversation_state is => CM_SEND_STATE

Routine called: CMPTR
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED
conversation_state is => CM_SEND_STATE

Routine called: CMDEAL
Ready;

Figure 36. Results of Confirmation Processing by PROCESS EXEC

And, here are the results displayed at the SERVR user ID:

86 z/VM: CPI Communications User's Guide



Advanced Calls

Routine called: CMACCP
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM_RECEIVED
conversation_state is => CM_CONFIRM_STATE

Routine called: CMCFMD
conversation_ID is 00000000
return_code is CM_0K
conversation_state is => CM_RECEIVE_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM_SEND_RECEIVED
conversation_state is => CM_CONFIRM_SEND STATE

Routine called: CMCFMD
conversation_ID is 00000000
return_code is CM_OK
conversation_state is => CM_SEND_STATE

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMSEND
conversation_state is => CM_SEND_STATE

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM DEALLOC RECEIVED
conversation_state is => CM_CONFIRM_DEALLOCATE_STATE

Routine called: CMCFMD
conversation_ID is 00000000
return_code is CM_OK

Conversation deallocated by partner
Ready;

Figure 37. Results of Confirmation Processing by SENDBACK EXEC

Our program still has the same basic flow to it, but there are some differences this
time. Notice that whenever a confirmation request was made, it was reflected to the
partner in the status_received parameter of a Receive (CMRCV) call.

Also notice the states that the conversation entered following receipt of a
confirmation request. The conversation will remain in the Confirm, Confirm-Send,
or Confirm-Deallocate state until the local program replies to the partner with
Confirmed (CMCFMD), Send_Error (CMSERR), or Deallocate (CMDEAL) with
deallocate_type set to CM_DEALLOCATE_ABEND.

Chapter 3. Advanced CPI Communications Calls 87



Advanced Calls

— FYI: Tidying Up, Part Il
Now that we have seen the conversation state changes for several program
executions, let's comment out that section of the TraceParms subroutine in
both the PROCESS EXEC and the SENDBACK EXEC. Here is an easy way
to make that change:

TraceParms:

[ e m e e e e e e e */
/* Display parameters and their values as passed to this subroutine.*/
L PR */
ey */
/* Extract the current conversation state of the local program. */
S */

/* Commenting out next four lines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation_state is =>',
cm_conversation_state.conversation_state
. %/
return

Most of the previously added calls to TraceParms no longer pass a list of
parameters, so those existing calls will not be providing any function now. If
you choose to remove the calls or comment them out, go right ahead, but
leaving them in the programs the way they are is also fine. We still want to
keep the TraceParms calls in the Receive routine sections that pass the
data_received and status_received values.

We will continue calling TraceParms once each time a new routine gets added
to one of our programs to display the resulting parameters.

We have mentioned the prepare_to_receive_type and deallocate_type
characteristics in the context of the last few communications routines, but we have
not described their function. Now, let’s take a closer look at what they are used for
by discussing the routines that can set them.

The Set_Prepare_To_Receive_Type (CMSPTR) Call

The Set_Prepare_To_Receive_Type (CMSPTR) call sets the
prepare_to_receive_type conversation characteristic for a given conversation and
overrides the value assigned by the Initialize_Conversation (CMINIT) or
Accept_Conversation (CMACCP) call.

The format for Set_Prepare_To_Receive_Type is:

CALL CMSPTR(conversation_ID, input
prepare_to_receive_type, input
return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

88 z/vVM: CPI Communications User's Guide



Advanced Calls

Use the prepare_to_receive_type parameter to specify the type of
prepare-to-receive processing to be performed for this conversation. You can set
the prepare_to_receive_type variable to one of the following values:
CM_PREP_TO_RECEIVE_SYNC_LEVEL (0)

Perform the prepare-to-receive based on one of the following sync_level

settings:

» If sync_level is CM_NONE, execute the function of the Flush (CMFLUS)
call and enter Receive state.

» If sync_level is CM_CONFIRM, execute the function of the Confirm
(CMCFM) call and if successful (as indicated by a return code of CM_OK
on the Prepare_To_Receive call, or a return code of CM_OK on the
Send_Data call with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE), enter Receive state. If Confirm
is not successful, the state of the conversation is determined by the
return code.

» If sync_level is CM_SYNC_POINT, enter Defer-Receive state until the
program issues a synchronization point service’s commit or backout call,
or until the program issues a Confirm or Flush call for this conversation.
If one of those calls is successful, enter Receive state. Otherwise, the
conversation state is determined by the return code.

CM_PREP_TO_RECEIVE_FLUSH (1)
Execute the function of the Flush (CMFLUS) call and enter Receive state.
CM_PREP_TO_RECEIVE_CONFIRM (2)

Execute the function of the Confirm call and if successful (as indicated by a

return code of CM_OK on the Prepare_To_Receive call, or a return code of

CM_OK on the Send_Data call with send_type set to

CM_SEND_AND_PREP_TO_RECEIVE), enter Receive state. If it is not

successful, the state of the conversation is determined by the return code.

Output Parameter
The possible values for the return_code parameter are:
CM_OK (0)
indicates that the prepare_to_receive_type has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates an error from CMS; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned, that the
prepare_to_receive_type is CM_PREP_TO_RECEIVE_CONFIRM, but the
conversation is assigned with sync_level set to CM_NONE, or that the
prepare_to_receive_type is set to an undefined value.

Results of the Call
Anything other than a return code of CM_OK results in no change to the
prepare_to_receive_type characteristic. This call does not cause a state change.

Adding CMSPTR to Our Requester Program

When sync_level is CM_CONFIRM, a program that sets the
prepare_to_receive_type to CM_PREP_TO_RECEIVE_CONFIRM will behave
exactly as a program that keeps the default value of
CM_PREP_TO_RECEIVE_SYNC_LEVEL.

We saw the confirmation request that was received by the server following the
requester’s call to Prepare_To_Receive (CMPTR) the last time we ran our
programs. Now let's set the prepare_to_receive_type to
CM_PREP_TO_RECEIVE_FLUSH. This will have the same effect as following the
Prepare_To_Receive call with a call to Flush (CMFLUS).

Chapter 3. Advanced CPI Communications Calls 89



Advanced Calls

We will add the Set_Prepare_To_Receive call to the PROCESS EXEC just to see
the difference in processing. Instead of the partner receiving a status_received
value of CM_CONFIRM_SEND_RECEIVED, it should get CM_SEND_RECEIVED.

Let’s add the call immediately before the Prepare_To_Receive call. Your exec
should now have the following lines in it.

/*:::===============================================================*/
/* PROCESS EXEC - Sample file requester application. */
N L L
/*_'_ ________________________________________________________________ */
/* Confirm that partner has started and received the name of x/
/* the requested file. x/
]y */

'"CMCFM conversation_ID request_to_send_received',
'return_code'

say; say 'Routine called: CMCFM'

if (return_code -= CM_0K) then call ErrorHandler 'CMCFM'

call TraceParms

T */
/* Set the prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. */
T S */

prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH

'CMSPTR conversation_ID prepare_to_receive_type return_code'

say; say 'Routine called: CMSPTR'

if (return_code ~= CM_OK) then call ErrorHandler 'CMSPTR'

call TraceParms 'conversation_ID prepare_to_receive_type return_code'

]y */
/* Issue Prepare_To_Receive to switch the conversation state from =/
/* Send state to Receive state. */
2y */

'"CMPTR conversation_ID return_code'

say; say 'Routine called: CMPTR'

if (return_code -= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms

Ty */
/* Display parameters and their values as passed to this subroutine.*/
2y */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' Teft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'sync_level') then
say ' sync_level is' cm_sync_level.sync_level
when (parameter = 'prepare_to_receive_type') then
say ' prepare_to_receive_type is',

90 z/VM: CPI Communications User's Guide



cm_prepare_to_receive_type.prepare_to_receive_type
otherwise
Sayll

parameter 'is' value(parameter)
end

end

/* Commenting out next four lines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation_state is =>',
cm_conversation_state.conversation_state
L%/
return

File the exec and let’s try it out with
process getfile

and again pick confirmation processing.

The terminal session from the REQUESTR virtual machine is:

Chapter 3. Advanced CPlI Communications Calls

Advanced Calls

91



Advanced Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Would you Tike confirmation processing? (Y/N)
Y

Routine called: CMSSL
Confirmation processing enabled

Routine called: CMALLC
Routine called: CMSEND
Routine called: CMCFM

Routine called: CMSPTR
conversation_ID is 00000000
prepare_to_receive_type is CM_PREP_TO_RECEIVE_FLUSH
return_code is CM_OK

Routine called: CMPTR

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND RECEIVED

Routine called: CMDEAL
Ready;

Figure 38. Results after Adding CMSPTR Call to PROCESS EXEC

And at the SERVR virtual machine, you will see:

92 z/VM: CPI Communications User's Guide



Advanced Calls

Routine called: CMACCP
Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM RECEIVED
Routine called: CMCFMD
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED
Routine called: CMSEND
Routine called: CMSEND
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM DEALLOC RECEIVED
Routine called: CMCFMD

Conversation deallocated by partner
Ready;

Figure 39. Results of SENDBACK EXEC Execution

This time the server’'s Receive (CMRCV) call, which completes following the
requester’'s Prepare_To_Receive call, returned a status_received value of
CM_SEND_RECEIVED. Before we changed the prepare_to_receive_type, that
same Receive completed with CM_CONFIRM_SEND_RECEIVED in
status_received.

Keep in mind that the prepare_to_receive_type for the requester’s end of the
conversation will continue to be CM_PREP_TO_RECEIVE_FLUSH for the rest of
the conversation, unless a subsequent call to Set_Prepare_To_Receive_Type resets
it.

You also should understand that the prepare_to_receive_type for the server’s end of
the conversation remains unchanged at this point. It is still set to the default value
CM_PREP_TO_RECEIVE_SYNC_LEVEL.

The Set_Send_Type (CMSST) Call

The Set_Send_Type (CMSST) call sets the send_type characteristic for a given
conversation and overrides the value that was assigned with the
Initialize_Conversation (CMINIT) or Accept_Conversation (CMALLC) call.

The format for Set_Send_Type is:

CALL CMSST(conversation_ID, input
send_type, input
return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Chapter 3. Advanced CPI Communications Calls 93



Advanced Calls

Use the send_type parameter to specify what information, if any, is to be sent to
the remote program in addition to the data supplied on the Send_Data (CMSEND)
call, and whether the data is to be sent immediately or buffered. You can set the
send_type variable to one of the following values:
CM_BUFFER_DATA (0)

No additional data is sent; supplied data could be buffered.
CM_SEND_AND_FLUSH (1)

No additional data is sent; supplied data is sent immediately.
CM_SEND_AND_CONFIRM (2)

Supplied data is sent immediately along with a confirmation request.
CM_SEND_AND_PREP_TO_RECEIVE (3)

Supplied data is sent immediately along with send control of the

conversation.
CM_SEND_AND_DEALLOCATE (4)

Supplied data is sent immediately along with deallocation notification.

Output Parameter
The possible return_code values are:
CM_OK (0)
indicates that the send_type value has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned, that an
undefined value was specified for send_type, or that there is a conflict
between the send_type value and the sync_level value.

Results of the Call

Anything other than a return code of CM_OK results in no change to the send_type
characteristic. This call does not cause a state change.

Adding CMSST to Our Server Program
Let's add the Set_Send_Type call to the SENDBACK EXEC on the SERVR user ID.
We will use a send_type value of CM_SEND_AND_PREP_TO_RECEIVE.

That change will affect the behavior of any Send_Data calls that follow it because a
state change notification will be sent along with the file contents. However, we do
not want to transfer send control of the conversation to the file requester partner
until after the entire file has been sent. For that reason, the Set_Send_Type call
needs to be inserted into the Send_Data loop so that the send_type is set just
before the last Send_Data call is issued.

Your exec should now have the following lines:

[¥================================ssssssssssssssssssssssssssssssss=xx/
/* SENDBACK EXEC - Sample server application. */
[¥============================================s=========ss=ss==s====xx/
[Hmmmm e Subroutines ---------------mmmmm - */
SendFile:

2y */
/* Read the contents of the requested file and send each Tine of */
/* the file to the partner program. */
ey */

address command 'EXECIO * DISKR' requested_file '(FINIS STEM LINE.'
do index = 1 to Tine.0

94 zVM: CPI Communications User's Guide



Advanced Calls

if (index = 1ine.0) then

Ty S Sy Sy Sy SRSy Sy Sy Sy Sy Sy Sy S SR */
/* Reset the send_type conversation characteristic just */
/* before the final Send_Data call. */
T */
do

send_type = CM_SEND_AND_PREP_TO_RECEIVE
'CMSST conversation_ID send_type return_code'
say; say 'Routine called: CMSST'
if (return_code -= CM_OK) then call ErrorHandler 'CMSST'
call TraceParms 'conversation_ID send_type return_code'
end
buffer = Tine.index
send_length = length(buffer)
'CMSEND conversation_ID buffer send_Tength',
‘request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms
end

return

TraceParms:

[ e m e e e e e */
/* Display parameters and their values as passed to this subroutine.*/
L PRt */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_Tlength)
when (parameter = 'receive_buffer') then
say ' buffer is' left(receive buffer,received length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'send_type') then
say ' send_type is' cm_send_type.send_type

otherwise
say ' ' parameter 'is' value(parameter)
end
end
[ e m e e e e */
/* Extract the current conversation state of the local program */
L PRt */

/* Commenting out next four Tines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
say ' conversation_state is =>',
cm_conversation_state.conversation_state

. o*/

return

Now file the exec, and let's execute it. Start it with

Chapter 3. Advanced CPI Communications Calls 95



Advanced Calls

process getfile
and choose confirmation processing.

The results on the requester side should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Would you like confirmation processing? (Y/N)
Y

Routine called: CMSSL
Confirmation processing enabled

Routine called: CMALLC
Routine called: CMSEND
Routine called: CMCFM
Routine called: CMSPTR
Routine called: CMPTR
Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS RECEIVED
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM_SEND_RECEIVED
Routine called: CMCFMD

Routine called: CMDEAL
Ready;

Figure 40. Results of PROCESS EXEC Execution

The server side’s results should be:

96 z/VM: CPI Communications User's Guide



Advanced Calls

Routine called: CMACCP

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM RECEIVED

Routine called: CMCFMD
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED
Routine called: CMSEND
Routine called: CMSST
conversation_ID is 00000000
send_type is CM_SEND_AND_PREP_TO RECEIVE
return_code is CM_OK
Routine called: CMSEND
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_CONFIRM_DEALLOC_RECEIVED
Routine called: CMCFMD

Conversation deallocated by partner
Ready;

Figure 41. Results after Adding CMSST Call to SENDBACK EXEC

The results are basically the same as the last time we executed our programs.
However, the last Receive call on the REQUESTR side of the conversation
indicates that the status_received value is CM_CONFIRM_SEND_RECEIVED this
time, rather than CM_SEND_RECEIVED. Do you understand what happened?

By the time the final Send_Data call is issued by the server, the program has reset
the send_type to CM_SEND_AND_PREP_TO_RECEIVE. When the Send_Data
routine is called, that send_type value causes send control of the conversation to
be sent to the partner program along with any data that is supplied. The same
results can be achieved by issuing Send_Data with the default send_type of
CM_BUFFER_DATA followed by a Prepare_To_Receive call.

We need to remember, though, that the prepare_to_receive_type characteristic also
comes into the picture because of that implicit Prepare_To_Receive call. The
Set_Prepare_To_Receive_Type (CMSPTR) call that the PROCESS EXEC issues
affects only the file requester’s end of the conversation. So, the server’s
prepare_to_receive_type has not changed from the default of
CM_PREP_TO_RECEIVE_SYNC_LEVEL.

Now, the sync_level of the conversation must be taken into consideration. Because
we request confirmation processing, the sync_level characteristic is set to
CM_CONFIRM. When the prepare_to_receive_type is
CM_PREP_TO_RECEIVE_SYNC_LEVEL and the sync_level is CM_CONFIRM, an
implicit confirmation request is sent to the partner. If a positive response is received,
the local side of the conversation enters Receive state.

Chapter 3. Advanced CPI Communications Calls 97



Advanced Calls

The Receive (CMRCV) call following the Send_Data call in the SENDBACK EXEC
had been changing the conversation state. Now, that state change is happening as
a result of the Send_Data call, instead.

In effect, when the Send_Data call is made, it is as if our program also issued a
Prepare_To_Receive (CMPTR) call and a Confirm (CMCFM) call. The point behind
our example is twofold. First, as we have already seen, it is possible to combine the
function of multiple calls into a single call. In some cases, this capability may
simplify your programs. Second, you need to keep this fact in mind so that you can
write your programs to correctly anticipate this type of behavior.

The Set_Deallocate_Type (CMSDT) Call

The Set_Deallocate_Type (CMSDT) call sets the deallocate_type characteristic for a
given conversation and overrides the value assigned with either the
Initialize_Conversation (CMINIT) or Accept_Conversation (CMACCP) call.

The format for Set_Deallocate_Type is:

CALL CMSDT(conversation_ID, input
deallocate_type, input
return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the deallocate_type parameter to specify the type of deallocation to be
performed. You can set it to one of the following values:
CM_DEALLOCATE_SYNC_LEVEL (0)

perform deallocation based on the sync_level characteristic in effect for this

conversation:

» If sync_level is CM_NONE, execute the function of the Flush (CMFLUS)
call and deallocate the conversation normally and unconditionally.

* If sync_level is CM_CONFIRM, execute the function of the Confirm
(CMCFM) call. The conversation is deallocated normally when the remote
program responds to the confirmation request by issuing the Confirmed
(CMCFMD) call. The conversation remains allocated when the remote
program responds to the confirmation request by issuing the Send_Error
(CMSERR) call.

» If sync_level is CM_SYNC_POINT, defer the deallocation until the
program issues a synchronization point service’s commit call. If the
commit call is successful, the conversation is deallocated normally. If the
commit is not successful or if the program issues a synchronization point
service’s backout call instead of a commit, the conversation is not
deallocated.

CM_DEALLOCATE_FLUSH (1)
execute the function of the Flush call and deallocate the conversation
normally.

CM_DEALLOCATE_CONFIRM (2)

execute the function of the Confirm call. The conversation is deallocated

normally when the remote program responds to the confirmation request by

issuing the Confirmed call. The conversation remains allocated if the remote
program responds to the confirmation request by issuing the Send_Error

(CMSERR) call.

CM_DEALLOCATE_ABEND (3)
execute the function of the Flush call when the program is in Send state

98 z/VM: CPI Communications User's Guide



Advanced Calls

and deallocate the conversation abnormally. If the program is in Receive
state, data purging can occur. This deallocate_type is used to
unconditionally deallocate the conversation regardless of the level of
synchronization, and is intended for use when a program detects an error
condition that prevents further useful communications.

Output Parameter
The possible values for the return_code parameter are:
CM_OK (0)
indicates that the deallocate_type value has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned, that there is a
conflict between the sync_level and the deallocate_type values, or that the
deallocate_type specifies an undefined value.

Results of the Call
When return_code is anything other than CM_OK, the deallocate_type characteristic
is unchanged. This call does not cause a state change.

Adding CMSDT to Both Our Programs

Setting the deallocate_type to CM_DEALLOCATE_FLUSH will make a Deallocate
(CMDEAL) call act like one with a deallocate_type of
CM_DEALLOCATE_SYNC_LEVEL combined with a sync_level of CM_NONE.
These are the default values for these conversation characteristics.

A Deallocate with deallocate_type set to CM_DEALLOCATE_CONFIRM is the same
as one with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL combined
with sync_level set to CM_CONFIRM. That is how our program is currently working.

The deallocate_type that is a little more interesting is CM_DEALLOCATE_ABEND,
which a program would use when it determines there is a problem that will prevent
further communications with its partner.

When our programs detect a bad return_code value, they call an error routine and
exit. The best way to leave any conversation is to first issue Deallocate, and now

we have a way of successfully calling Deallocate regardless of the conversation’s

current state.

Let’s change the error subroutines Error and ErrorHandler in both programs to call
a new subroutine named AbnormalEnd. The AbnormalEnd routine will issue a
Set_Deallocate_Type call with deallocate_type set to CM_DEALLOCATE_ABEND,
followed by a Deallocate call. The required update is similar in both execs.

The PROCESS exec should include the following additions:

[#================c==cs=ssss=ssssscssssssssssssssssssssssssszsszsszox/
/* PROCESS EXEC - Sample file requester application. */
[#================c=s=cms=smsmsmomsocmsossossossossssssssossossozsssok/
[ F e e e e Subroutines =------mmmmmmm e */
TraceParms:

J* e m —mmm - */
/* Display parameters and their values as passed to this subroutine.*/
ey */

Chapter 3. Advanced CPI Communications Calls 99



Advanced Calls

100

parse arg parmlist

do word num = 1 to words(parmlist)
parameter = word(parmlist,word _num)
select

when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' lTeft(buffer,send_Tlength)
when (parameter = 'receive_buffer') then
say ' buffer is' lTeft(receive buffer,received length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send received') then
say ' request_to_send_received is',
cm_request_to_send received.request _to_send received
when (parameter = 'sync_level') then
say ' sync_level is' cm_sync_level.sync_level
when (parameter = 'prepare_to_receive_type') then
say ' prepare_to_receive_type is',
cm_prepare_to_receive_type.prepare_to_receive_type
when (parameter = 'deallocate_type') then

say deallocate_type is' cm_deallocate_type.deallocate_type
otherwise
say ' ' parameter 'is' value(parameter)
end
end

/* Commenting out next four lines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say ' conversation_state is =>',

cm_conversation_state.conversation_state

. %/

return

Error:

say
say
say

'# ERROR: REXX has detected an error'
! The return code variable RC was set to' rc

call AbnormalEnd
signal GetOut

ErrorHandler:

parse arg routine_name

say
say
say

"% ERROR: An error occurred during a' routine_name 'call'
' The return_code was set to' cm_return_code.return_cod

call AbnormalEnd
signal GetOut

AbnormalEnd:

/* Abnormally deallocate the conversation. Since we are exiting

z/NM: CPI Communications User's Guide

*/
*/

*/
*/
*/

*/
*/

e

*/



Advanced Calls

/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
T */

deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms 'conversation_ID deallocate_type return_code’
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_0K) then
call TraceParms 'conversation_ID return_code'
end

return

And, the SENDBACK exec should include these additional lines:

/*::================================================================*/
/+* SENDBACK EXEC - Sample server application. */
/*::================================================================*/
[Hm Subroutines -=-------mmmmmmm o */

ey */
/* Display parameters and their values as passed to this subroutine.*/
Ty */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' Teft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'send_type') then
say ' send_type is' cm_send_type.send_type
when (parameter = 'deallocate_type') then
say ' deallocate_type is' cm_deallocate_type.deallocate_type

otherwise
say ' ' parameter 'is' value(parameter)
end
end
2y */
/* Extract the current conversation state of the local program. */
/Ty */

/* Commenting out next four Tines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
say ' conversation_state is =>',
cm_conversation_state.conversation_state

.o/

Chapter 3. Advanced CPI Communications Calls 101



Advanced Calls

return

Error:

say
say '* ERROR: REXX has detected an error'

say ' The return code variable RC was set to' rc
call AbnormalEnd

signal GetOut

ErrorHandler:

T Sy S Sy S Sy Sy USSRy S Sy S */
/* Report routine that failed and the error return code. */
[ m e e */
parse arg routine_name

say

say '* ERROR: An error occurred during a' routine_name 'call'

say The return_code was set to' cm_return_code.return_code

call AbnormalEnd
signal GetOut

AbnormalEnd:

e */
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
gy Ly gy g S */

deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms 'conversation_ID deallocate_type return_code'
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms 'conversation_ID return_code'
end

return

Now file the execs and enter
process getfile

but do not select confirmation processing this time.

The results on the REQUESTR user ID should be:

102 z/V/M: CPI Communications User’s Guide



Advanced Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC
Routine called: CMSEND
Routine called: CMCFM

* ERROR: An error occurred during a CMCFM call
The return_code was set to CM_PROGRAM_PARAMETER_CHECK

Routine called: CMSDT
conversation_ID is 00000000
deallocate_type is CM_DEALLOCATE_ABEND
return_code is CM_OK

Routine called: CMDEAL
conversation_ID is 00000000
return_code is CM_OK

Ready;

Figure 42. Results after Adding CMSDT Call to PROCESS EXEC

The results on the SERVR user ID should be:

Routine called: CMACCP
Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS RECEIVED
Routine called: CMRCV

* ERROR: An error occurred during a CMRCV call
The return_code was set to CM_DEALLOCATED_ABEND

Routine called: CMSDT
Ready;

Figure 43. Results after Adding CMSDT Call to SENDBACK EXEC

Let’s start our analysis of what happened with the requester. Because we answered
“no” to the confirmation prompt, Set_Sync_Level was not called to change the
sync_level conversation characteristic. Therefore, when the requester program tried
to issue a Confirm call, the sync_level characteristic’s value was CM_NONE. This
attempt caused the CM_PROGRAM_PARAMETER_CHECK return_code. The
requester’'s ErrorHandler routine was called and Set_Deallocate_Type was called to
set the deallocate_type to CM_DEALLOCATE_ABEND. Deallocate was then issued
to terminate the conversation.

That abnormal termination was reflected to the server program on a Receive call
that completed with a return_code of CM_DEALLOCATED_ABEND. When the
server program detected that something was wrong, it called the error subroutine,
which called Set_Deallocate_Type with deallocate_type set to

Chapter 3. Advanced CPI Communications Calls 103



Advanced Calls

CM_DEALLOCATE_ABEND for its side of the conversation. But because the
deallocation of the conversation by the requester had already been completed, the
server’s end of the conversation was in Reset state. Thus, the attempt to set the
deallocate_type failed because the conversation ID was no longer assigned. (Recall
that we do not bother to display an error message if the Set_Deallocate_Type call
fails, because the conversation is already being deallocated because of an error.)

While trying out the CM_DEALLOCATE_ABEND deallocate_type, we also
discovered a logic error in the requester application. These sample programs are
handling conversations with sync_level set to either CM_NONE or CM_CONFIRM,
so the requester should not call Confirm unless confirmation processing has been
enabled.

Because the PROCESS EXEC sets the sync_level to CM_CONFIRM based on
console input, we can add conditional logic preceding the Confirm call to ensure
that Confirm is called only when confirmation processing is requested.

The change to the PROCESS EXEC would look like:

/*:::===============================================================*/
/* PROCESS EXEC - Sample file requester application. */
/*:::===============================================================*/
/*-'_ ________________________________________________________________ */
/* Send the name of the file being requested to the partner program.=*/
S S S S S Sy Sy S Sy S Sy S Sy Sy Sy Sy S S —— */

buffer = fname ftype fmode

send_Tlength = Tlength(buffer)

'CMSEND conversation_ID buffer send_length',
'request_to_send_received return_code'

say; say 'Routine called: CMSEND'

if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'

call TraceParms

S */
/* Call Confirm only when sync_level is not CM_NONE. We can use */
/* the confirmation processing flag set from console input. */
Ty Ay gy Sy Sy Yy S S RS */
if (perform_confirm = 'Y') then
do
J e m e e e e e */
/* Confirm that partner has started and received the name of */
/* the requested file. */
2 */

'"CMCFM conversation_ID request_to_send_received',
'return_code'

say; say 'Routine called: CMCFM'

if (return_code -= CM_OK) then call ErrorHandler 'CMCFM

call TraceParms

end
K e e e e */
/* Set the prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. */
Ty S S S Sy Sy S Sy S Sy Sy USSRy S S S —— */

prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH

'CMSPTR conversation_ID prepare_to_receive_type return_code'
say; say 'Routine called: CMSPTR'

if (return_code == CM_OK) then call ErrorHandler 'CMSPTR'
call TraceParms

104 z/vM: CPI Communications User’s Guide



Advanced Calls

The Extract_Conversation_Type (CMECT) Call

The Extract_Conversation_Type (CMECT) call extracts the value of the
conversation_type characteristic for a given conversation. This routine is useful for a
server application that wants to determine what the conversation_type is for a
conversation it has accepted.

When the server accepts a conversation, the conversation_type characteristic has
already been defined by the requester. Perhaps a server is written to send data with
the expectation that the conversation is mapped, like our file-request server. With
the addition of an Extract_Conversation_Type call immediately following an
Accept_Conversation (CMACCP) call, the server can determine if the conversation
it just accepted is mapped or basic. If the conversation is basic, the server can then
call Set_Deallocate_Type (CMSDT) to set the deallocate_type to
CM_DEALLOCATE_ABEND and issue a Deallocate (CMDEAL) call to terminate the
conversation.

Alternatively, suppose the server wants to handle both mapped and basic
conversations. A program issuing the Send_Data (CMSEND) call for a basic
conversation must add a logical record length field as part of the buffer parameter.
(This is done automatically by CPlI Communications on a mapped conversation,
which is one of the reasons we are using a mapped conversation between our two
applications.) By issuing an Extract_Conversation_Type call, a server program can
determine whether it needs to perform this type of extra processing. The
[CMS Application Development Guide|contains a sample CPI Communications
resource manager program that uses the Extract_Conversation_Type call in a
similar way.

The format for Extract_Conversation_Type is:

CALL CMECT((conversation_ID, input
conversation_type, output
return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameters
The conversation_type parameter is a variable for returning the conversation_type
characteristic of the specified conversation. Possible values it can return are:
CM_BASIC_CONVERSATION (0)
CM_MAPPED_CONVERSATION (1)

Possible values for the return_code parameter are:
CM_OK (0)

indicates that the conversation_type has been extracted successfully.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)

indicates that the specified conversation ID is unassigned.

Chapter 3. Advanced CPI Communications Calls 105



Advanced Calls

Results of the Call

If the return code is not CM_OK, no conversation_type will be returned to the local
program. The call neither changes the conversation_type for the specified
conversation, nor causes a state change.

Adding CMECT to Our Server Program
Let’s add the Extract_Conversation_Type call to the SENDBACK EXEC, following
the Accept_Conversation (CMACCP) call.

If the conversation is basic, we will want to deallocate it abnormally. A Deallocate
call with deallocate_type set to CM_DEALLOCATE_ABEND is already coded in the
ErrorHandler subroutine, so let’s just call it to terminate the conversation.

The updated exec should look like:

[¥================sssssscssmsossssossssossssossssosssssssssossssossow/
/* SENDBACK EXEC - Sample server application. x/
[#======================================ss=ss=ssssss=ss=ssssssssssssszosk
/*_._ ________________________________________________________________ */
/* Accept the incoming conversation. */
== == —— ... */

'CMACCP conversation_ID return_code'

say; say 'Routine called: CMACCP'

if (return_code -= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms

T S */
/* Extract conversation_type to ensure the conversation is mapped. */
gy ey gy g S */

'CMECT conversation_ID conversation_type return_code'

say; say 'Routine called: CMECT'

if (return_code -= CM_OK) then call ErrorHandler 'CMECT'

call TraceParms 'conversation_ID conversation_type return_code’

T */
/* If the conversation is basic, deallocate abnormally. */
ey ey gy g S */
if (conversation_type = CM_BASIC_CONVERSATION) then
do
say; say '* ERROR: Accepting and deallocating a basic',
'conversation'

call AbnormalEnd
signal GetOQut

end
S */
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
]y */

requested_file =
requested_length = 20

i */
/* Display parameters and their values as passed to this subroutine.*/
[ m e e */

parse arg parmlist

do word num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select

106 z/VVM: CPI Communications User’s Guide



when (parameter

Advanced Calls

= 'return_code') then

say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then

say ' buffer is' Teft(buffer,send_length)
when (parameter = 'receive_buffer') then

say ' buffer is' lTeft(receive buffer,received_length)
when (parameter = 'data_received') then

say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then

say ' status_received is' cm status received.status_received
when (parameter = 'request_to_send_received') then

say ' request_to_send_received is',

cm_request_to_send_received.request_to_send_received

when (parameter
say '
when (parameter

= 'send_type') then

send_type is' cm_send_type.send_type

= 'deallocate_type') then

say ' deallocate_type is' cm deallocate_type.deallocate_type
when (parameter = 'conversation_type') then

say conversation_type is',
cm_conversation_type.conversation_type
otherwise
say ' ' parameter 'is' value(parameter)
end

end
ey */
/* Extract the current conversation state of the local program. */
g */

/* Commenting out next four Tines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation state is =>',
cm_conversation_state.conversation_state
L%/
return

Before we try out the update we just made, however, let’s look at a routine that can
be used to alert the partner that an error may have occurred.

The Send_Error (CMSERR) Call

A program can use the Send_Error (CMSERR) call to inform its partner that it
detected an error during a conversation. If the conversation is in Send state when
Send_Error is issued, the call forces the LU to flush its send buffer.

Upon completion of a successful Send_Error call, the local program is in Send state
and the remote program is in Receive state.

A program can use this routine to truncate an incomplete logical record it is
sending, to inform the remote program of an error detected in received data, or to
reject a confirmation request. In some situations, it may be useful to follow this call
with a Send_Data (CMSEND) call to provide further information to the partner.

The format for Send_Error is:

CALL CMSERR(conversation_ID, input
request_to_send_received, output
return_code) output

107

Chapter 3. Advanced CPlI Communications Calls



Advanced Calls

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameters
The request_to_send_received parameter is a variable for returning an indication
of whether a request-to-send notification has been received from the partner
program. It can return one of the following values:
CM_REQ_TO_SEND_NOT_RECEIVED (0)
CM_REQ_TO_SEND_RECEIVED (1)

If a request-to-send notification was received, it means that the remote program has
requested that the local program’s end of the conversation enter Receive state,
which would place the remote program’s end of the conversation in Send state.

Note: When return_code indicates CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, request_to_send_received does not
contain a value.

Depending on the state of the conversation, some of the possible return_code
values that can be returned are:
CM_OK (0)
indicates that the Send_Error call executed successfully.
CM_DEALLOCATED_ABEND (17)
usually indicates that the remote program deallocated the conversation with
deallocate_type set to CM_DEALLOCATE_ABEND, or the remote LU did so
because of a remote program abnormal-ending condition. The conversation
is in Reset state.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_ERROR_PURGING (22)
indicates that the remote program issued a Send_Error call and the
conversation for the remote program was in Receive or Confirm state. The
call may have caused information to be purged. Purging occurs when the
remote program issues Send_Error for a conversation in Receive state
before receiving all the information that the local program sent (all of the
information sent before the CM_PROGRAM_ERROR_PURGING return
code is reported to the local program).
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.
CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Send, Receive, Send-Pending,
Confirm, Confirm-Send, Confirm-Deallocate, Sync-Point,
Sync-Point-Send, or Sync-Point-Deallocate state.

Allocation errors can also be returned on a Send_Error call.

Results of the Call

When return_code indicates CM_OK, the conversation enters Send state if the call
is issued in Receive, Confirm, Confirm-Send, Confirm-Deallocate, or
Send-Pending state. No state change occurs when the call is issued in Send state.

Adding CMSERR to Our Server Program

For our example, we will have SENDBACK EXEC call Send_Error if it detects that a
basic conversation has been accepted. Let's add the call after the
Extract_Conversation_Type (CMECT) call we just added, immediately before the
ErrorHandler is called to deallocate the conversation.

108 z/VM: CPI Communications User’s Guide



Advanced Calls

The server program should include these changes:

[#=======s=smsmsmsmsmsmsmsmsmsssmscsoscssscscsssssssssssssssososososkf
/* SENDBACK EXEC - Sample server application. */
/*:::===============================================================*/
/*_'. ________________________________________________________________ */
/* Extract conversation_type to ensure the conversation is mapped. */
Ty */

'CMECT conversation_ID conversation_type return_code'

say; say 'Routine called: CMECT'

if (return_code >= CM_0K) then call ErrorHandler 'CMECT'

call TraceParms 'conversation_ID conversation_type return_code'

ey */

/% 1f the conversation is basic, deallocate abnormally. */

Ty */

if (conversation_type = CM_BASIC_CONVERSATION) then

do
say; say '* ERROR: Accepting and deallocating a basic',
'conversation'

Ty S S Uy S Uy Sy Sy S */
/* Call Send_Error to notify partner that error was detected. */
/* Since the program is going to exit, do not check the */
/* Send_Error results for an error. */
/£ 2y */

'CMSERR conversation_ID request_to_send_received return_code'
say; say 'Routine called: CMSERR'
if (return_code = CM_OK) then
call TraceParms 'conversation_ID request_to_send_received',
'return_code'
call AbnormalEnd
signal GetOQut

end
g */
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
2y */

requested_file = "'
requested_length = 20

Now, the only way to test the changes we have made is to have a basic
conversation accepted by the server. To create a basic conversation, we need to
issue the Set_Conversation_Type call.

The Set_Conversation_Type (CMSCT) Call

The Set_Conversation_Type (CMSCT) call sets the conversation_type characteristic
for a given conversation, overriding the value assigned with the
Initialize_Conversation (CMINIT) call.

Only the program initiating a conversation (using the Initialize_Conversation call)
can issue the Set_Conversation_Type call. The call must be issued while in
Initialize state, prior to the Allocate (CMALLC) call for the specified conversation.

The default conversation_type supplied by CPlI Communications during
conversation initialization is CM_MAPPED_CONVERSATION, so the only time a
program would need to call Set_Conversation_Type is when a basic conversation is
required.

Chapter 3. Advanced CPI Communications Calls 109



Advanced Calls

The format for Set_Conversation_Type is:

CALL CMSCT(conversation_ID, input
conversation_type, input
return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the conversation_type parameter to specify the type of conversation to be
allocated. You can set it to one of the following values:
CM_BASIC_CONVERSATION (0)
CM_MAPPED_CONVERSATION (1)

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)
indicates that the conversation_type has been set.
CM_PRODUCT_SPECIFIC_ERROR(20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned, that the
conversation_type specifies an undefined value, or that the
conversation_type is set to CM_MAPPED_CONVERSATION, but the fill
characteristic is set to CM_FILL_BUFFER or a prior call to Set_Log_Data is
still in effect.
CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state. Therefore, the
conversation_type characteristic cannot be altered.

Results of the Call
If a return_code other than CM_OK is returned on the call, the conversation_type
characteristic is not changed. This call does not cause a state change.

Adding CMSCT to Our Requester Program

We have avoided basic conversations up to now because they are more difficult to
write. However, just for this section, we will start one to demonstrate how the
changes we have made to the server program work.

We are not going to worry about setting up a program to correctly process a basic
conversation. We will just add a Set_Conversation_Type call in the PROCESS
EXEC, following the Initialize_Conversation (CMINIT) call.

We will want to continue focusing on mapped conversations, so we will remove the
Set_Conversation_Type call after we have tested the exec.

The requester program will temporarily include these additions:

[¥============================================s=========ss=ss==s====zx/
/* PROCESS EXEC - Sample file requester application. */
/*:::===============================================================*/
/*_'_ ________________________________________________________________ */
/* Initialize the conversation. */
]y */

'CMINIT conversation_ID sym dest _name return_code'
say; say 'Routine called: CMINIT'

110 zVvM: CPI Communications User's Guide



Advanced Calls

if (return_code -= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms

T */
/* Set the conversation_type to basic. */
T S */

conversation_type = CM_BASIC_CONVERSATION

'CMSCT conversation_ID conversation_type return_code'

say; say 'Routine called: CMSCT'

if (return_code ~= CM_OK) then call ErrorHandler 'CMSCT'

call TraceParms 'conversation_ID conversation_type return_code'

2y */
/* Determine if confirmation processing is desired. */
ey */

say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then

do
gy */
/* Set sync_level to CM_CONFIRM. */
2 */

sync_level = CM_CONFIRM
'CMSSL conversation_ID sync_level return_code'
say; say 'Routine called: CMSSL'
if (return_code -= CM_OK) then call ErrorHandler 'CMSSL
call TraceParms
say ' Confirmation processing enabled'
end

Ty */
/* Display parameters and their values as passed to this subroutine.x/
e */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' Teft(receive buffer,received _length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'sync_level') then
say ' sync_Tlevel is' cm_sync_Tlevel.sync_level
when (parameter = 'prepare_to receive type') then
say ' prepare_to_receive_type is',
cm_prepare_to_receive_type.prepare_to_receive_type
when (parameter = 'deallocate_type') then
say ' deallocate_type is' cm_deallocate_type.deallocate_type
when (parameter = 'conversation_type') then
say ' conversation_type is',
cm_conversation_type.conversation_type
otherwise
say ' ' parameter 'is' value(parameter)
end
end

Chapter 3. Advanced CPI Communications Calls 111



Advanced Calls

/* Extract the current conversation state of the local program.

/* Commenting out next four Tines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation_state is =>',
cm_conversation_state.conversation_state
. ox/

return

File the exec and start it up with

process getfile

and choose not to have confirmation performed.

Results on the requester side should be:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: CMSCT
conversation_ID is 00000000
conversation_type is CM_BASIC_CONVERSATION
return_code is CM_0K

Would you Tike confirmation processing? (Y/N)
N

Routine called: CMALLC
Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
The return_code was set to CM_PROGRAM_ERROR_PURGING

Routine called: CMSDT

Routine called: CMDEAL
Ready;

Figure 44. Results of PROCESS EXEC Establishing a Basic Conversation

The server’s results should be:

112  zvM: CPI Communications User's Guide




Advanced Calls

Routine called: CMACCP

Routine called: CMECT
conversation_ID is 00000000
conversation_type is CM_BASIC_CONVERSATION
return_code is CM_OK

* ERROR: Accepting and deallocating a basic conversation
Routine called: CMSERR
conversation_ID is 00000000
request_to_send_received is CM_REQ_TO_SEND_NOT_RECEIVED
return_code is CM_OK

Routine called: CMSDT

Routine called: CMDEAL
Ready;

Figure 45. Results of SENDBACK EXEC Detecting a Basic Conversation

The requester program sets the conversation type to basic and the server program
detects this with the Extract_Conversation_Type call. The server program issues a
Send_Error (CMSERR) call and then a Deallocate (CMDEAL) with deallocate_type
set to CM_DEALLOCATE_ABEND. As the Send_Error flows to the requester, it
causes the incoming requested file name data to be purged without being received.
That fact is reported to the requester when its Send_Data (CMSEND) call
completes with a return_code of CM_PROGRAM_ERROR_PURGING.

Because Send_Error causes the side of the conversation that calls it to enter Send
state, its partner (the requester program in this case) enters Receive state when its
Send_Data call completes. The requester recognizes that the last return_code value
is not CM_OK, so it calls ErrorHandler to terminate the conversation. Although both
partners issue a Deallocate call, only one of them will be successful. We chose not
to have our ErrorHandler subroutine report any additional errors because it is
already deallocating the conversation and terminating the program.

Now you can go back and remove the code we added for the
Set_Conversation_Type call, including that in the TraceParms subroutine, from
PROCESS EXEC.

The Set_Partner_LU_Name (CMSPLN) Call

The Set_Partner_LU_Name (CMSPLN) call sets the partner_LU_name
characteristic for a given conversation, overriding the partner LU name obtained
from side information using the sym_dest_name.

This call does not change any data in the side information, and the new
partner_LU_name value will be known only for this particular conversation.

Only the program initializing a conversation (using the Initialize_Conversation
(CMINIT) call) can issue Set_Partner_LU_Name. The call must be issued while in
Initialize state, prior to the Allocate (CMALLC) call for the specified conversation.

Partner location information is usually kept in side information. This call might be
included if a particular program did not want to use the partner_LU_name acquired
from side information, or if the program wanted to ensure that the partner LU _name
it used would not be affected by a change to the :1uname. tag in the

Chapter 3. Advanced CPI Communications Calls 113



Advanced Calls

communications directory. Explicitly setting the partner_LU_name may decrease the
portability of the program to other SAA platforms because VM uses a space as a
delimiter rather than a period.

The format for Set_Partner_LU_Name is:

CALL CMSPLN(conversation_ID, input
partner_LU_name, input
partner_LU_name_length, input
return_code) output

output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the partner_LU_name parameter to specify the name of the remote LU where
the remote transaction program is located. This LU name is any name by which the
local LU knows the remote LU for purposes of allocating a conversation.

In VM, a partner_LU_name consists of two character strings separated by a blank.

Use the partner_LU_name_length parameter to specify the length of the partner
LU name, which can be from 1 to 17 bytes.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)
indicates that the partner LU name has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the
specified partner_LU_name_length is less than 1 or greater than 17.
CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state. Therefore, the
partner_LU_name conversation characteristic cannot be altered.

Results of the Call

If the return_code is not CM_OK, the partner_LU_name and
partner_LU_name_length characteristics remain unchanged. This call does not
cause a state change.

Adding CMSPLN to Our Requester Program

Our requester program does not need the Set_Partner_LU_Name call, but let’s try it
out to see how it works. We will add the call following the Initialize_Conversation
call and provide an invalid value.

Your exec should now have the following lines:

[rmmmmmmmmmmmmmmmmmmmo ooy
/* PROCESS EXEC - Sample file requester application. */
[¥==========================ssssssssssssssssssssssssssssssssssssss=sw/
/*_._ ________________________________________________________________ */
/* Initialize the conversation. */
== === —— ... */

'CMINIT conversation_ID sym dest name return_code'

114  zvM: CPI Communications User's Guide



Advanced Calls

say; say 'Routine called: CMINIT'
if (return_code == CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms

S S S S Sy */
/* Set the partner_LU_name explicitly. */
S */

partner_LU_name = 'UNKNOWN NAME'

partner_LU_name_length = length(partner_LU_name)

'CMSPLN conversation_ID partner_LU_name',
'partner_LU_name_length return_code’

say; say 'Routine called: CMSPLN'

if (return_code == CM_0K) then call ErrorHandler 'CMSPLN'

call TraceParms 'conversation_ID partner_LU_name',

'partner_LU_name_length return_code'

e */
/* Determine if confirmation processing is desired. */
Ty PSS Sy Sy S Sy S Sy Sy S S S S —— */

say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then

do
2 */
/* Set sync_level to CM_CONFIRM. */
T S S S S S S Sy YRS P */

sync_Tevel = CM_CONFIRM
'CMSSL conversation_ID sync_Tevel return_code'
say; say 'Routine called: CMSSL'
if (return_code == CM_OK) then call ErrorHandler 'CMSSL'
call TraceParms 'conversation_ID sync_Tevel return_code'
say ' Confirmation processing enabled'

end

File the exec and execute it by entering
process getfile

from the command line and answer the confirmation prompt with 'N’.

The results on the requester side should be:

Chapter 3. Advanced CPI Communications Calls 115



Advanced Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: CMSPLN
conversation_ID is 00000000
partner_LU_name is UNKNOWN NAME
partner_LU name_Tength is 12
return_code is CM_OK

Would you Tike confirmation processing? (Y/N)
N

Routine called: CMALLC

* ERROR: An error occurred during a CMALLC call
The return_code was set to CM_PARAMETER_ERROR

Routine called: CMSDT

Routine called: CMDEAL
Ready;

Figure 46. Results of Setting an Unknown LU Name from PROCESS EXEC

The Set_Partner_LU_Name call executed correctly, but the Allocate call failed with
return_code set to CM_PARAMETER_ERROR. The problem is that we specified a
bad value for the partner_LU_name.

The failure of our program has shown that inclusion of the Set_Partner_LU_Name
call resulted in overriding the side information value for the partner LU name, as we
expected.

You can either correct the partner_LU_name or remove the call to
Set_Partner_LU_Name. We will go back and provide the valid partner_LU_name for
our server. (Remember that you need to substitute the appropriate name if you are
using a different user ID.) For the example we have shown, we need to replace
UNKNOWN NAME with *USERID SERVR, as follows:

partner_LU name = '+USERID SERVR'

See the |z/VM: Connectivity| book for information on LU naming conventions in VM.

The exec should work correctly again, if you want to execute it.

The Set_TP_Name (CMSTPN) Call

The Set_TP_Name (CMSTPN) call sets the TP_name characteristic for a given
conversation, overriding the transaction program (TP) name obtained from side
information using the sym_dest_name.

Executing this call does not change the transaction program name provided with the
:tpn. tag in the communications directory. It only changes the value of the
TP_name characteristic for this particular conversation.

Only the program initializing a conversation (using the Initialize_Conversation
(CMINIT) call) can issue Set_TP_Name. The call must be issued while in Initialize
state, prior to the Allocate (CMALLC) call for the specified conversation.

116 z/vM: CPI Communications User's Guide



Advanced Calls

Note: The TP name must be formatted according to the naming conventions of the
partner LU.

The format for Set_ TP_Name is:

CALL CMSTPN(conversation_ID, input
TP_name, input
TP_name_length, input
return_code) output

Input Parameters
Use the conversation_ID parameter to identify the conversation.

Use the TP_name parameter to specify the name of the remote program, as it is
known at the target LU.

Use the TP_name_length parameter to specify the length of the TP_name, from 1
to 64 bytes.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)
indicates that the TP name has been set.
CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the conversation ID is unassigned or the specified length of
the TP name is less than 1 or greater than 64.
CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state. Therefore, the
TP_name characteristic cannot be altered.

Results of the Call
If the return code is not CM_OK, then the TP_name and TP_name_length
characteristics remain unchanged. This call does not cause a state change.

Adding CMSTPN to Our Requester Program

Again, our requester program does not need to use Set_TP_Name, but we will add
the call to demonstrate its use. Let's add it following the Set_Partner_LU_Name
(CMSPLN) call and provide an invalid value.

Your exec should now have the following lines.

/*:::===============================================================*/
/* PROCESS EXEC - Sample file requester application. */
.
/*_._ ________________________________________________________________ */
/* Set the partner_LU_name explicitly. */
e */

partner_LU name = '+USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU name',
'partner_LU _name_Tlength return_code'
say; say 'Routine called: CMSPLN'
if (return_code == CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms

Chapter 3. Advanced CPI Communications Calls 117



Advanced Calls

/* Set the transaction program name (TP_name) explicitly. */

TP_name = 'NOTATPNAME'

TP_name_length = length(TP_name)

'CMSTPN conversation_ID TP_name TP_name_length return_code’

say; say 'Routine called: CMSTPN'

if (return_code ~= CM_OK) then call ErrorHandler 'CMSTPN'

call TraceParms 'conversation_ID TP_name TP_name_length return_code'

ey */
/* Determine if confirmation processing is desired. x/
2y */

say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then

do
gy */
/* Set sync_level to CM_CONFIRM. */
gy */

sync_Tevel = CM_CONFIRM
'CMSSL conversation_ID sync_level return_code'
say; say 'Routine called: CMSSL'
if (return_code -= CM_0K) then call ErrorHandler 'CMSSL'
call TraceParms
say ' Confirmation processing enabled'
end

Now to test what happens, begin the program with
process getfile
and again forgo the confirmation processing.

The results on the requester’s side are:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: CMSPLN

Routine called: CMSTPN
conversation_ID is 00000000
TP_name is NOTATPNAME
TP_name_length is 10
return_code is CM_OK

Would you Tike confirmation processing? (Y/N)
N

Routine called: CMALLC
Routine called: CMSEND

* ERROR: An error occurred during a CMSEND call
The return_code was set to CM_TPN_NOT_RECOGNIZED

Routine called: CMSDT
Ready;

Figure 47. Results of Setting an Incorrect TP Name from PROCESS EXEC

118 zVvM: CPI Communications User's Guide



Advanced Calls

At the server’s terminal, you will see:

hh:mm:ss * MSG FROM SERVR : DMSIUH2027E Connection request on path 0
is severed for reason =7

Figure 48. Results on Server Virtual Machine Because of an Incorrect TP Name

The results should look familiar to you because we had a similar problem in
[Chapter 2, “Starter Set CPI Communications Calls.”l The partner LU was unable to
start a program with the TP name we provided because it does not exist. The sever
reported at the server’s terminal is reflected back to the requester on the
Send_Data (CMSEND) call when it completes with return_code set to
CM_TPN_NOT_RECOGNIZED. The conversation has entered Reset state at the
requester's end when the Send_Data call completes, so the Set_Deallocate_Type
(CMSDT) call fails with CM_PROGRAM_PARAMETER_CHECK, which we do not
see, and the Deallocate (CMDEAL) is not issued.

This problem can be remedied easily by either replacing NOTATPNAME with the
correct value or removing the call. We will replace NOTATPNAME with the correct
value as follows :

TP_name = 'GET'

Feel free to run the programs again to confirm that they work correctly after making
the change.

Overviews of Additional Advanced Calls

Although we will not be adding the routines covered in this section to either of our
programs, they are included here to give you a brief introduction to some additional
CPI Communications calls that are available to programmers.

Extract_Mode_Name (CMEMN) Call

The Extract_Mode_Name (CMEMN) call extracts the mode name for a
conversation. CPl Communications returns the mode name in the mode_name
parameter.

Extract_Partner_LU_Name (CMEPLN) Call

The Extract_Partner_LU_Name (CMEPLN) call extracts the partner LU name for a
conversation. CPl Communications returns the partner LU name in the
partner_LU_name parameter.

Extract_Mode_Name (CMEMN) and Extract_Partner_LU_Name can provide
information about the session carrying the conversation and the conversation
originator.

Extract_Sync_Level (CMESL) Call

The Extract_Sync_Level (CMESL) call extracts the value of the sync_level
conversation characteristic for a given conversation. The value is returned in the
sync_level parameter.

Request_To_Send (CMRTS) Call

A program can use the Request_To_Send (CMRTS) call to notify its conversation
partner that it wants to enter Send state for a given conversation.

Chapter 3. Advanced CPI Communications Calls 119



Advanced Calls

When a conversation is in Receive state, it cannot send data without permission.
The partner in Send state effectively exercises control over the conversation. The
Request_To_Send call is used by a program in Receive state to notify its partner
that it wishes to change states and send data.

The partner program is made aware of the request by the
request_to_send_received parameter being set to
CM_REQ_TO_SEND_RECEIVED on a Send_Data (CMSEND),
Test_Request_To_Send (CMTRTS), Confirm (CMCFM), Send_Error (CMSERR), or
Receive (CMRCV) call. The Request_To_Send call is the only way for a program to
request control.

The program that issues Request_To_Send does not get control of the conversation
until it receives a status_received value of CM_SEND_RECEIVED or
CM_CONFIRM_SEND_RECEIVED from the remote program on a subsequent
Receive call.

Set_Error_Direction (CMSED) Call

The Set_Error_Direction (CMSED) call sets the error_direction characteristic for a
given conversation, overriding the value assigned by the Initialize_Conversation
(CMINIT) or Accept_Conversation (CMACCP) call.

A program should issue Set_Error_Direction before calling Send_Error (CMSERR)
for a conversation in Send-Pending state. Send-Pending state arises when a
Receive (CMRCV) call completes with both data and a conversation status of
CM_SEND_RECEIVED. This call lets a program indicate to its partner whether the
error is in the data just received, or is a local processing error.

Set_Fill (CMSF) Call

The Set_Fill (CMSF) call sets the fill characteristic for a given conversation,
overriding the value assigned with the Initialize_Conversation (CMINIT) or
Accept_Conversation (CMACCP) calls. The Set_Fill call is valid only for basic
conversations.

Use the Set_Fill call to specify that you want to receive data independent of its
logical record format. In other words, each logical record will not necessarily be
presented to your program as it arrives, but rather will be buffered. The amount of
data received will be equal to or less than the length specified by the
requested_length parameter of the Receive call.

Set_Log_Data (CMSLD) Call

The Set_Log_Data (CMSLD) call sets the log_data and log_data_length
characteristics for a given conversation, overriding the values assigned with the
Initialize_Conversation (CMINIT) or Accept_Conversation (CMACCP) calls. The
Set_Log_Data call is valid only for basic conversations.

Log data is program-unique error information that is to be logged. The data supplied
by the program is any data the program wants to have logged, such as information
that can help identify the cause of the error. The data is sent on a Send_Error call
or a Deallocate call when deallocate_type is CM_DEALLOCATE_ABEND.

Set_Mode_Name (CMSMN) Call

The Set_Mode_Name (CMSMN) call sets the mode_name and mode_name_length
characteristics for a given conversation, overriding the value originally obtained from

120 z/VM: CPI Communications User’s Guide



Advanced Calls

side information using the sym_dest_name. The mode name designates network
properties for the session to be allocated for the conversation. Network properties
include, for example, the class of service to be used and whether data is to be
encrypted. The mode name is needed only when allocating a conversation to a
partner in the SNA network.

Only the program initiating a conversation (using the Initialize_Conversation
(CMINIT) call) can issue Set_Mode_Name. The call must be issued while in
Initialize state, prior to the Allocate (CMALLC) call for the specified conversation.

As with the Set_Partner_LU_Name (CMSPLN) and Set_TP_Name (CMSTPN) calls,
a program would use Set_Mode_Name to avoid dependency on the side
information. As was the case with the other routines, explicitly setting the
mode_name within a program may make that program less portable.

Set_Return_Control (CMSRC) Call

The Set_Return_Control (CMSRC) call sets the return_control characteristic for a
given conversation, overriding the value assigned with the Initialize_Conversation
(CMINIT) call.

Set_Return_Control can be called only by the program that initiates a conversation
(using the Initialize_Conversation call). The call must be issued while in Initialize
state, prior to the Allocate (CMALLC) call for the specified conversation.

A program might use this call to set the return_control characteristic to
CM_IMMEDIATE if it had other processing it could perform should a wait be
required for a session to become available. If the Allocate call completes with
return_code set to CM_UNSUCCESSFUL, the program could do some other
processing until it wanted to attempt another conversation allocation. Not setting the
return_control characteristic to CM_IMMEDIATE would result in the program waiting
until a session was available for the conversation to be allocated.

Set_Receive_Type (CMSRT) Call

The Set_Receive_Type (CMSRT) call sets the receive_type conversation
characteristic for a given conversation and overrides the initial value assigned by
the Initialize_Conversation (CMINIT) or Accept_Conversation (CMACCP) call.

With the default receive_type setting of CM_RECEIVE_AND_WAIT, a Receive
(CMRCYV) call will not complete until incoming information is available for it to
receive.

If a program needs to perform processing outside of a CPl Communications
conversation, changing the receive_type to CM_IMMEDIATE could be beneficial.
That way, the program could periodically issue a Receive call to check for incoming
information, and if there was not anything available to receive, the call would
complete with the data_received parameter set to CM_NO_DATA_RECEIVED and
the status_received parameter set to CM_NO_STATUS_RECEIVED. The program
could then perform some of its other processing until it again wanted to poll for
information.

The Set_Receive_Type call only affects the local side of the conversation, and after

it is set, the receive_type will remain in effect for the rest of the conversation or until
Set_Receive_Type is called again.

Chapter 3. Advanced CPI Communications Calls 121



Advanced Calls

Test_Request_To_Send_Received (CMTRTS) Call

A program uses the Test_Request_To_Send_Received (CMTRTS) call to determine
whether a request-to-send notification has been received from the remote program
for a given conversation.

The Modified Sample Execs

In this section, we have included a complete listing of both of the programs we
have been developing, incorporating all the changes made through the end of this

chapter.

The PROCESS Sample File Requester Exec
/x==s========ssssssoomoooomoooosooooooooooooooooooosoooooooooooooooy
/* PROCESS EXEC - Sample file requester application. x/
[#================c=s=cmssmsomsommmmsossosssssossossossscssossozsosok/
arg sym dest name fname ftype fmode /* get user's input */
/2y */
/+* If a file was not specifically requested, set up a default. */
e */
if (fname = '') then

do
fname = 'TEST'
ftype = 'FILE'
fmode = 'A'
end
say 'Requesting the file: ' fname ftype fmode
ey */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
S S S S Sy S Sy S Sy Sy USSRy S —— */

address cpicomm
signal on error

ey */
/* Equate pseudonyms to their integer values based on the x/
/* definitions contained in the CMREXX COPY file. x/
2y */

address command 'EXECIO * DISKR CMREXX COPY % (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

ey */
/* Initialize the conversation. x/
2y */

'CMINIT conversation_ID sym dest _name return_code'

say; say 'Routine called: CMINIT'

if (return_code -= CM_0K) then call ErrorHandler 'CMINIT'
call TraceParms

2y */
/* Set the partner_ LU name explicitly. */
2y */

partner_LU name = 'xUSERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
'partner_LU name_Tength return_code'
say; say 'Routine called: CMSPLN'
if (return_code -= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms

[ e m e e */
/* Set the transaction program name (TP_name) explicitly. */
ey */

TP_name = 'GET'
TP_name_length = Tength(TP_name)

122 z/vM: CPI Communications User’s Guide



Advanced Calls

'"CMSTPN conversation_ID TP_name TP_name_length return_code'
say; say 'Routine called: CMSTPN'

if (return_code -= CM_OK) then call ErrorHandler 'CMSTPN'
call TraceParms

[ m e e e e */
/* Determine if confirmation processing is desired. */
L PRt */

say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then

do
J e m e e e e e e e */
/* Set sync_level to CM_CONFIRM. */
B PRt */

sync_Tevel = CM_CONFIRM

'CMSSL conversation_ID sync_Tlevel return_code'

say; say 'Routine called: CMSSL'

if (return_code -= CM_0K) then call ErrorHandler 'CMSSL'
call TraceParms

say Confirmation processing enabled'
end
S */
/* Allocate the conversation. */
Ty S Sy S Sy S Sy Sy Sy S Sy Sy Sy S S S */

'CMALLC conversation_ID return_code'

say; say 'Routine called: CMALLC'

if (return_code -= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms

e */
/* Send the name of the file being requested to the partner program.=*/
Ty PSS S Sy S Sy S S Sy S Sy Sy Sy Sy S S —— */

buffer = fname ftype fmode

send_Tlength = length(buffer)

'CMSEND conversation_ID buffer send_length',
'request_to_send_received return_code'

say; say 'Routine called: CMSEND'

if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'

call TraceParms

ey */
/* Call Confirm only when sync_level is not CM_NONE. We can use */
/* the confirmation processing flag set from console input. */
ey */
if (perform_confirm = 'Y') then
do
T S U S Sy S S S U RSy PR */
/* Confirm that partner has started and received the name of */
/* the requested file. */
2 */

'CMCFM conversation_ID request_to_send_received',
'return_code'

say; say 'Routine called: CMCFM'

if (return_code -= CM_OK) then call ErrorHandler 'CMCFM

call TraceParms

end
e */
/* Set the prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. */
e */

prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH

'CMSPTR conversation_ID prepare_to_receive_type return_code'
say; say 'Routine called: CMSPTR'

if (return_code == CM_OK) then call ErrorHandler 'CMSPTR'
call TraceParms

2y */
/* Issue Prepare_To Receive to switch the conversation state from =*/
/* Send state to Receive state. */
S S S S S S Sy U S S S IS S */

'"CMPTR conversation_ID return_code'

Chapter 3. Advanced CPlI Communications Calls

123



Advanced Calls

124

sa
if
ca

/*
/*
/*
/*
/*
/*
/*

co
re
do

en

'C

y; say 'Routine called: CMPTR'
(return_code == CM_OK) then call ErrorHandler 'CMPTR'
11 TraceParms
Start a Receive loop. Receive calls will be issued until
notification that the partner has finished sending data and
entered Receive state at its end of the conversation (noted by
receipt of CM_SEND RECEIVED or CM_CONFIRM_SEND RECEIVED
for status_received) or until a return_code value other than
CM_OK is returned. The record length of the incoming data
is assumed to be 80 bytes, or Tess.
mplete_Tine =
quested_length = 80
until (status_received = CM_SEND RECEIVED) |,
(status_received = CM_CONFIRM_SEND RECEIVED)

'"CMRCV conversation_ID receive_buffer requested_length',
'data_received received_length status_received',
'request_to_send_received return_code'

say; say 'Routine called: CMRCV'

select

when (return_code = CM_OK) then
do
call TraceParms 'data_received status_received'
if (data_received -= CM_NO_DATA_RECEIVED) then
do
receive_buffer = left(receive_buffer,received_length)
complete line = complete line || receive buffer
end
if (data_received = CM_COMPLETE_DATA RECEIVED) then
do

/* Use EXECIO to write the data to OUTPUT LOGFILE A
/* and reset the complete_line variable to nulls.

address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS'
'STRING' complete_Tline

complete_line =
end

/* Determine whether a confirmation request has been
/* received. If so, respond with a positive reply.

if (status_received = CM_CONFIRM_RECEIVED) |,
(status_received = CM_CONFIRM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
do

/* Issue Confirmed to reply to the partner.
g
'CMCFMD conversation_ID return_code'
say; say 'Routine called: CMCFMD'
if (return_code == CM_OK) then call ErrorHandler 'CMCFMD
call TraceParms
end
end
otherwise
call ErrorHandler 'CMRCV'
end
d

MDEAL conversation_ID return_code'

z/NM: CPI Communications User's Guide

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/



Advanced Calls

say; say 'Routine called: CMDEAL'
if (return_code == CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms

GetOut:
exit

2y */
/* Display parameters and their values as passed to this subroutine.x/
ey */

parse arg parmlist
do word _num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' lTeft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' lTeft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'sync_level') then
say ' sync_Tlevel is' cm_sync_Tlevel.sync_level
when (parameter = 'prepare_to receive type') then
say ' prepare_to_receive_type is',
cm_prepare_to_receive_type.prepare_to_receive_type
when (parameter = 'deallocate type') then
say ' deallocate_type is' cm_deallocate_type.deallocate_type

otherwise
say ' ' parameter 'is' value(parameter)
end
end
ey */
/* Extract the current conversation state of the local program. */
Ty */

/* Commenting out next four Tines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation_state is =>',
cm_conversation_state.conversation_state

.ox/
return
Error:
ey */
/* Report error when REXX special variable RC is not 0 */
/2y */
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc

call AbnormalEnd
signal GetOut

ErrorHandler:

Chapter 3. Advanced CPlI Communications Calls

125



Advanced Calls

/* Report routine that failed and the error return code. */
2y */
parse arg routine_name

say

say '* ERROR: An error occurred during a' routine_name 'call'

say The return_code was set to' cm_return_code.return_code
call AbnormalEnd

signal GetOut

AbnormalEnd:

J e m e e */
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
ey */

deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms
end

return

The SENDBACK Sample Server Exec

/*==================================================================*/
/+* SENDBACK EXEC - Sample server application. */
B S S —
S */
/* Set up REXX environment for program-to-program communications x/
/* and enable error trapping of REXX errors. x/
2y */

address cpicomm
signal on error

ey */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
e */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

S */
/* Accept the incoming conversation. */
S S S S Sy S Sy S Sy Sy USSRy S S S —— */

'CMACCP conversation_ID return_code’

say; say 'Routine called: CMACCP'

if (return_code -= CM_0K) then call ErrorHandler 'CMACCP'
call TraceParms

e */
/* Extract conversation_type to ensure the conversation is mapped. */
Sy S Sy S Sy Sy S Sy S Sy Sy USSR S —— */

'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'

if (return_code -= CM_0K) then call ErrorHandler 'CMECT'
call TraceParms

S */
/* If the conversation is basic, deallocate abnormally. */
T S S S S Sy S S Sy S Sy S Sy USSR S —— */

126 z/VM: CPI Communications User’s Guide



Advanced Calls

if (conversation_type = CM_BASIC_CONVERSATION) then

do
say; say '* ERROR: Accepting and deallocating a basic',
'conversation'
[ e m e e e e e */
/* Call Send_Error to notify partner that error was detected. */
/* Since the program is going to exit, do not check the */
/% Send_Error results for an error. */
gy */

'CMSERR conversation_ID request to send received return_code'
say; say 'Routine called: CMSERR'
if (return_code = CM_OK) then
call TraceParms
call AbnormalEnd
signal GetOut

end
Ty PSS Sy Sy S Sy S Sy Sy S S S S —— */
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
g */

requested_file = "'
requested_Tength = 20
do until (CMRCV_return_code -= CM_OK) |,
(status_received = CM_CONFIRM DEALLOC RECEIVED)
'CMRCV conversation_ID receive_buffer requested_length',
'data_received received_length status_received',
'request_to_send_received return_code'
CMRCV_return_code = return_code
say; say 'Routine called: CMRCV'
select
when (CMRCV_return_code = CM _OK) then
do
call TraceParms 'data_received status_received'
if (data_received —-= CM_NO_DATA _RECEIVED) then
do
receive_buffer
requested_file

left(receive_buffer,received length)
requested_file || receive_buffer

end
g */
/* Determine whether a confirmation request has been */
/* received. If so, respond with a positive reply. */
2y */

if (status_received = CM_CONFIRM RECEIVED) |,
(status_received = CM_CONFIRM_SEND RECEIVED) |,
(status_received = CM_CONFIRM DEALLOC_RECEIVED) then

do
[ m — —mm m - */
/* Issue Confirmed to reply to the partner. */
/2y */

'"CMCFMD conversation_ID return_code'
say; say 'Routine called: CMCFMD'
if (return_code -= CM_OK) then call ErrorHandler 'CMCFMD'
call TraceParms
end
if (status_received
(status_received
call SendFile
else
if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
do
say; say 'Conversation deallocated by partner'
end

CM_SEND_RECEIVED) |,
CM_CONFIRM_SEND_RECEIVED) then

end
when (CMRCV_return_code = CM DEALLOCATED NORMAL) then
do
call TraceParms 'data_received status_received'
say; say 'Conversation deallocated by partner!'

Chapter 3. Advanced CPI Communications Calls 127



Advanced Calls

end
otherwise
call ErrorHandler 'CMRCV'
end
end
GetOut:
exit
[rmmmm e Subroutines ---------------mmmm— -
SendFile:
g

/* Read the contents of the requested file and send each Tine of
/* the file to the partner program.

address command 'EXECIO * DISKR' requested file '(FINIS STEM LINE.
do index = 1 to line.0
if (index = 1ine.0) then

/* Reset the send_type conversation characteristic just
/* before the final Send Data call.

send_type = CM_SEND_AND_PREP_TO_RECEIVE
'CMSST conversation_ID send_type return_code'
say; say 'Routine called: CMSST'
if (return_code == CM_OK) then call ErrorHandler 'CMSST'
call TraceParms
end

buffer = line.index
send_length = Tength(buffer)
"CMSEND conversation_ID buffer send_length',

'request_to_send_received return_code'

say; say 'Routine called: CMSEND'
if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms

end

return

TraceParms:

parse arg parmlist

do word num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select

when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' left(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' lTeft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send received') then
say ' request_to_send received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'send type') then
say ' send_type is' cm_send_type.send_type
when (parameter = 'deallocate_type') then
say ' deallocate_type is' cm _deallocate_type.deallocate_type

128 z/VM: CPI Communications User’s Guide

*/
*/
*/

*/



Advanced Calls

when (parameter = 'conversation_type') then
say ' conversation_type is',
cm_conversation_type.conversation_type

otherwise
say ' ' parameter 'is' value(parameter)
end
end
g */
/* Extract the current conversation state of the local program. x/
e */

/* Commenting out next four Tines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
say ' conversation_state is =>',
cm_conversation_state.conversation_state

.ox/

return

Error:
S */
/* Report error when REXX special variable RC is not 0. */
Ty Sy PSS Sy Sy Sy Sy S Sy Sy Sy S S S —— */
say

say '* ERROR: REXX has detected an error'

say ' The return code variable RC was set to' rc

call AbnormalEnd

signal GetOut

ErrorHandler:

[ e m e e e e e e */
/* Report routine that failed and the error return code. */
e */
parse arg routine_name

say

say 'x ERROR: An error occurred during a' routine name 'call'

say The return_code was set to' cm_return_code.return_code
call AbnormalEnd

signal GetOut

AbnormalEnd:

2y */
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
e */

deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms
end

return

Chapter 3. Advanced CPlI Communications Calls

129



Advanced Calls

Summary

You have reached the end of the advanced-function calls chapter. In this chapter,
we learned more about conversation states. We explored confirmation processing
and the setting and extracting of conversation characteristics. Along the way, we
discovered how conversation characteristics can influence the course of a
conversation. It should be clear that the SAA CPlI Communications calls we have
covered provide powerful function.

Next, we will examine some of the VM extension calls to CPI Communications. We

will be using the same execs in the next section, so do not erase them. You might
want to make a backup copy of the execs at this point.

130 z/VM: CPI Communications User’s Guide



Chapter 4. VM Extensions to CPI Communications

Now that we are familiar with most of the SAA CPlI Communications routines, let’s
direct our attention to the VM extensions. These extension routines let you take
advantage of VM’s ability to provide additional security levels, to accept multiple
conversations for each transaction program (TP), and to set up an intermediate
server.

The Relationship between VM and SAA CPlI Communications

Before looking at the VM extension calls and what we can do with them, let’s step
back for a moment and briefly discuss the communications functions and protocols
underlying SAA CPI Communications. This will help us to understand VM’s
implementation of and extensions to CPI Communications.

SAA CPI Communications provides a programming interface to IBM’s Systems
Network Architecture (SNA) logical unit 6.2 (LU 6.2). SNA LU 6.2 defines a set of
communications functions and protocols that let application programs on different
systems communicate. The set of calls defined by SAA, however, does not
implement every aspect of the LU 6.2 protocol. VM provides extensions to SAA CPI
Communications to support several additional LU 6.2 features, such as support for
security types. VM also provides routines that can be considered extensions to the
LU 6.2 architecture. Resource manager support for accepting multiple incoming
conversations, for example, is not part of the LU 6.2 protocol. This support is very
important to server programs in the VM environment.

CPI Communications applications running in the VM environment can establish
conversations that closely conform to the LU 6.2 model for communications. Such
applications are referred to here as LU 6.2 transaction program model applications,
or TP-model applications. While a TP-model application can be created using only
SAA CPI Communications routines, such an application is also allowed to call most
of the VM/ESA extension routines.

For more detailed information on TP-model applications, see the “Understanding
CPI Communications” chapter in the|z/VM: CMS Application Development Guide,

Overview of VM Extension Calls

VM provides extension routines for setting and extracting access security
information and for supporting multiple concurrent conversations per server. These
functions do not exist in SAA CPl Communications.

Note: After VM extensions are added to a program, the program will require
modification if it is ported to another SAA platform. The VM extensions can
be used with the SAA starter set and advanced-function calls, but it may be
beneficial to place them in separate procedures whenever possible to
facilitate modifying your program in case you need to port it to another SAA
platform later.

We will divide this chapter into sections that group the VM extension routines
according to their use in our programs. First, we will discuss resource managers,
followed by some general security considerations. Then, we will discuss
intermediate servers and the security concerns relating specifically to them.

© Copyright IBM Corp. 1991, 2009 131



VM Extension Calls

Summary of VM Extension Calls

You can identify the extension calls easily because they all begin with the prefix XC.
In VM, these routines can be logically divided into several categories, as the
following tables show. Some of the routines are not discussed because they are
beyond the scope of this book.

Calls Used for Conversation Security

Pseudonym Call Description Page

Extract_Conversation_Security_ XCECSU Extracts the access security user 1D
User_ID for the conversation

Set_Client_Security_User_ID XCSCuUI Lets an intermediate server specify a |191

client user ID

Set_Conversation_Security XCSCSP Sets the access security password 162
Password for the conversation

Set_Conversation_Security_ XCSCST Sets the security level for the 158
Type conversation

Set_Conversation_Security XCSCSU Sets the access security user ID for  |161
User_ID the conversation

Calls Used for Resource Management and Event Notification

Pseudonym Call Description Page
Identify_Resource_Manager XCIDRM Identifies a name for a given

resource to be managed by this
program (resource manager)

Signal_User_Event XCSUE Queues an event to be reported by a [198
subsequent Wait_on_Event call in
the same virtual machine

Terminate_Resource_Manager XCTRRM Ends ownership of a resource by a
resource manager

Wait_on_Event XCWOE Allows an application to wait on an
event from one or more partners
(events that can be reported include
user events, allocation events,
information input, notification that a
resource has been revoked, console
input, and Shared File System
asynchronous events)

Calls Used for Resource Recovery Support

Pseudonym Call Description Page

B

Extract_Conversation_LUWID XCECL Extracts the logical unit of work ID
associated with the specified
protected conversation

Extract_Local_Fully_Qualified_ XCELFQ  Extracts the local fully-qualified LU
LU_Name name for the specified conversation

Extract_Remote_Fully_Qualified_ XCERFQ Extracts the remote fully-qualified LU [198]
LU_Name name for the specified conversation

Extract_ TP_Name XCETPN Extracts the TP name for the 198

specified conversation

132 z/vM: CPI Communications User’s Guide



VM Extension Calls

Call Used for Extracting CMS Work Unit ID

Pseudonym Call Description Page
Extract_Conversation_Workunitid XCECWU Extracts the CMS work unit ID
associated with the specified
conversation

Managing a Resource

In this section, we will use VM extension routines to convert our server program into
a resource manager that can handle requests for a particular resource (in this case,
a file called TEST FILE).

What Is a Resource Manager?

A resource manager is simply a program that controls access to a resource, such
as a file, database, device, or other entity that can be identified for application
program processing.

A resource is identified in VM by a name called a resource ID. When a user
requests a connection to a specific resource, the resource manager program
handles the request.

By identifying itself as a resource manager, a server application can manage one or
more resources and can accept more than one conversation per resource. Our
purpose here is to acquaint you with the concepts and the calls to implement them,
so we will not actually demonstrate the management of more than one resource or
the acceptance of more than one conversation.

What Kinds of Resources Are There?

We briefly discussed resources in the context of communications programming
earlier in the book, but let's review and expand upon what we know about them.
We mentioned four kinds of resources: local, global, system, and private.

Local

A local resource is known only to the local VM system. Only authorized users on
the local system can access the resource. In addition, the names of the local
resources must be unique within the system where they reside.

A local resource manager must be logged on and already running before users can
make a successful allocate conversation request.

Resources (for example, a printer) that should be limited to the users of one system
should be defined as a local resource to that system.

Global

A global resource is known to the local system, to all systems within the TSAF or
CS collection and to the SNA network. Global resource names must be unique
within the TSAF or CS collection. Authorized users in the TSAF or CS collection or
in the SNA network can access global resources.

A global resource manager must be logged on and already running before users
can make a successful allocate conversation request.

Chapter 4. VM Extensions to CPI Communications 133



VM Extension Calls

134

System

A system resource is known only to the VM/ESA system where it is located but is
remotely accessible from other systems. A system resource name only needs to be
unique to that system. Any authorized user in the TSAF or CS collection or the SNA
network connected to the system on which the system resource resides can access
the system resource.

A system resource manager must be logged on and already running before users
can make a successful allocate conversation request.

Private

A private resource is known only to the virtual machine where it resides. As we
have seen, the $SSERVER$ NAMES file identifies the various private resources and
validates all allocation requests. Private resource names need to be unique only
within the virtual machine where they reside. Any authorized users in the TSAF or
CS collection or in the SNA network can access private resources.

A private resource manager need not be logged on when the allocation request is
presented. CP will autolog a private resource manager and automatically invoke the
TP associated with a given resource found in the $SERVER$ NAMES file.

Resources that need to be limited to a single user should be defined as private. For
example, a user working on a workstation uses a program to access files
maintained in a virtual machine. These files would be defined as private resources
and the workstation user would be the only authorized user of the resources.

Using VM Extension Calls to Manage Resources
The following table shows in pseudocode style how our two programs are changing.
The calls we will be adding in this section appear in boldface.

Table 4. Overview of Sample Programs Using VM Extensions

REQUESTR User ID SERVR User ID
Initialize_Conversation Identify_Resource_Manager
Set_Conversation_Security_Type Do forever
Set_Conversation_Security_User_ID Wait_on_Event
Set_Conversation_Security_Password select on event type
Set_Partner_LU_Na,me when allocation request
Set_TP_Na,me Accept_Conversation
Allocate Extract_Conversation_Type
Send_Data if conversation type is basic
if performing confirmation Send_Error

Confirm when information input
Set_Prepare_To_Receive_Type
Prepare_To_Receive -Receive loop-
do until no data left to receive
-Receive loop- Receive
do until send control returned if confirmation requested
Receive Confirmed
if confirmation requested if send control received
Confirmed
end -Send loop-
do until whole file is sent
Deallocate if last data record
Set_Send_Type

z/NM: CPI Communications User's Guide



VM Extension Calls

Although we are not adding many new calls to our programs, you will notice that we
are restructuring SENDBACK EXEC on the SERVR user ID. This restructuring will
make our server program more flexible.

— FYI: Tidying Up, Part lll
In case you have not been removing unneeded parameters from the
TraceParms subroutine calls, you might want to go back and clean up the
PROCESS and SENDBACK execs now. Remove all the parameters on the
TraceParms subroutine calls that do not provide you with useful information
(only keep the status_received and data_received parameters). Remember,
we will be adding more of these calls for all the routines introduced in this
chapter and we do not want the console log to be too long.

If you just deleted the parameters on the TraceParms subroutine calls, rerun
the execs to make sure they complete successfully. We will not be using
confirmation processing in the rest of the program, so you can either
remember to answer “N” to the confirmation-processing prompt each time you
run the program, or you can comment out the following line in the PROCESS
EXEC

parse upper pull perform confirm

and add this declaration line to make the choice automatic:
perform_confirm = 'N'

The Identify_Resource_Manager (XCIDRM) Call

A server program uses the Identify_Resource_Manager (XCIDRM) call to declare to
CMS the name of the resource that it wants to manage.

An application can call Identify_Resource_Manager multiple times to identify
different resources that it wants to manage.

The format for Identify_Resource_Manager is:

CALL XCIDRM(resource_ID, input
resource_manager _type, input
service_mode, input
security_level_flag, input
return_code) output

Input Parameters

The Identify_Resource_Manager call expects four input parameters, the first of
which is the resource_ID, which specifies the name of a resource to be managed
by this resource manager application. The resource_ID parameter value
corresponds to the transaction program name provided by applications that allocate
a conversation for this resource. Those allocation requests are then routed to the
application that called this Identify_Resource_Manager routine.

Use the resource_manager_type parameter to specify whether the resource_ID
contains the name of a private, local, global, or system resource. Valid values are:
XC_PRIVATE (0)
indicates that the specified resource will be managed as a private resource,
accessible to authorized users residing in the local system, a TSAF or CS
collection, or an SNA network.

Chapter 4. VM Extensions to CPI Communications 135



VM Extension Calls

136

XC_LOCAL (1)
indicates that the specified resource will be managed as a local resource,
accessible only to users within the local system.

XC_GLOBAL (2)
indicates that the specified resource will be managed as a global resource,
accessible to users in the local system, the TSAF or CS collection, or the
SNA network.

XC_SYSTEM (3)
indicates that the specified resource will be managed as a system resource,
accessible to users in the local system, the TSAF or CS collection, or the
SNA network.

Use the service_mode parameter to specify how this resource manager application
handles conversations. Valid values are:
XC_SINGLE (0)
indicates that this resource manager program can accept only a
single conversation for the specified resource_ID.

After the resource manager program has accepted the single
conversation, further allocation requests for the same resource_ID
will be queued for private resources and deallocated for local and
global resources.

After the resource manager program has completed processing and
deallocated the single conversation, it should call the
Terminate_Resource_Manager (XCTRRM) routine before ending. A
private resource manager application that has queued allocation
requests pending will be restarted as soon as it ends.
XC_SEQUENTIAL (1)
indicates that this resource manager program can accept only one
conversation at a time for a given resource_ID.

After the resource manager program has accepted a conversation,
further allocation requests for the same resource_ID will be queued
for private resources and deallocated for local and global resources.

When a conversation is completed and deallocated, the resource
manager program can issue Wait_on_Event (XCWOE) to wait for
the next allocation request.

XC_MULTIPLE (2)
indicates that this resource manager program can accept multiple
concurrent conversations for a given resource_ID.

Subsequent allocation requests for the same resource_ID will be
presented to the resource manager program the next time
Wait_on_Event (XCWOE) is called.

Use the security_level_flag parameter to specify whether this resource manager
will accept allocation requests with conversation_security_type set to
XC_SECURITY_NONE (which is identical to having a :security. tag value of
NONE in the corresponding communications directory entry). Valid values are:

+ XC_REJECT_SECURITY_NONE (0)

*+ XC_ACCEPT_SECURITY_NONE (1)

Output Parameter

Possible values for the return_code parameter are:

CM_OK (0)
indicates that the Identify_Resource_Manager (XCIDRM) call completed
successfully.

z/NM: CPI Communications User's Guide



VM Extension Calls

CM_PRODUCT_SPECIFIC_ERROR (20)
indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the resource_ID has already been defined within the virtual
machine or that an invalid value was specified for the
resource_manager._type, service_mode, or security_level_flag.
(25) indicates that this is a TP-model application, so Identify_Resource_Manager
(XCIDRM) cannot be called. See the discussion of TP-model applications
‘The Relationship between VM and SAA CPlI Communications” on pagel
Mfor more information.
CM_UNSUCCESSFUL (28)
indicates that the resource_ID is already defined for another virtual machine
or that you do not have VM directory authorization to identify this local or
global resource.

Results of the Call
When return_code indicates CM_OK, the resource ID has been declared. This call
does not cause a state change.

Adding XCIDRM to Our Server Program

The server application that we have created can be considered a private resource
manager. Although this call is not required for our program and does not change the
results, it will show how to set up a resource manager. As an exercise, you may
want to try extending this program to accept multiple conversations for the same
resource.

We will add a call to Identify_Resource_Manager immediately preceding the
Accept_Conversation (CMACCP) call. Recall that the name of the private resource
being requested is passed to the resource manager as an argument. This private
resource name also happens to be the value specified on the :nick. tag in
$SERVER$ NAMES, as illustrated in|Figure 12 on page 32| We will use that value
passed as an argument to identify our resource on the Identify_Resource_Manager
call. In our case, it will be GET. Note that we do not have to use the value passed
as an argument for this purpose; we could identify the resource to be managed
simply by specifying its name in the program. The resource_manager_type will be
XC_PRIVATE. We have been dealing with just one conversation, so XC_SINGLE
will suffice for the service_mode, and we will exclude connections having a
conversation_security_type of XC_SECURITY_NONE by setting the
security_level_flag to XC_REJECT_SECURITY_NONE.

Because there is no conversation_ID associated with the
Identify_Resource_Manager call, the ErrorHandler subroutine will not need to be
called if an error is detected. We will just have the program display an error
message.

The SENDBACK EXEC should now have the following lines:

[#================c=scmssmsossommocssossossosssssossoossossossozssook/
/* SENDBACK EXEC - Sample server application. */
[#=====================================s=s=ss=ss=ss=ssss=ssss=ss=sssssssz=sk
arg resource_ID /* :nick. value from $SERVER$ NAMES file */
g */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
Ty */

address cpicomm
signal on error

Chapter 4. VM Extensions to CPI Communications 137



VM Extension Calls

138

/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
S */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

S */
/* Identify the application as manager of the private resource. */
P */

resource_manager_type = XC_PRIVATE

service_mode = XC_SINGLE

security_level_flag = XC_REJECT_SECURITY_NONE

'XCIDRM resource_ID resource_manager_type service_mode',
'security_level_flag return_code'

say; say 'Routine called: XCIDRM'

if (return_code -= CM_OK) then

do
say
say '* ERROR: An error occurred during an XCIDRM call'’
say ' The return_code was set to',

cm_return_code.return_code
signal GetOut
end
call TraceParms 'resource_ID resource_manager_type service_mode',
'security_level_flag return_code'

e */
/* Accept the incoming conversation. */
S */

'CMACCP conversation_ID return_code'

say; say 'Routine called: CMACCP'

if (return_code -= CM_0K) then call ErrorHandler 'CMACCP'
call TraceParms

ey */
/* Display parameters and their values as passed to this subroutine.x/
]y */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' vreturn_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_Tength)
when (parameter = 'receive_buffer') then
say ' buffer is' lTeft(receive buffer,received _length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'send type') then
say ' send_type is' cm_send_type.send_type
when (parameter = 'deallocate type') then
say ' deallocate_type is' cm_deallocate_type.deallocate_type
when (parameter = 'conversation_type') then
say ' conversation_type is',
cm_conversation_type.conversation_type

z/NM: CPI Communications User's Guide



VM Extension Calls

when (parameter = 'resource_manager_type') then
say ' resource_manager_type is',
XC_resource_manager_type.resource_manager_type
when (parameter = 'service_mode') then
say ' service_mode is' xc_service_mode.service_mode
when (parameter = 'security level_flag') then
say ' security_level_flag is',
xc_security_level _flag.security_level_flag

otherwise
say ' ' parameter 'is' value(parameter)
end
end
e */
/* Extract the current conversation state of the local program. */
e */

/* Commenting out next four lines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation_state is =>',
cm_conversation_state.conversation_state
.ox/

return

An application that calls Identify_Resource_Manager (XCIDRM) to declare
ownership of a resource should also call Terminate_Resource_Manager (XCTRRM)
to end its ownership of that resource before exiting. Let’'s examine the
Terminate_Resource_Manager call next and add it to our program before trying out
our revised program.

The Terminate_Resource_Manager (XCTRRM) Call

The Terminate_Resource_Manager (XCTRRM) call is used by a resource manager
application to terminate ownership of a resource. Any conversations and pending
allocation requests associated with the specified resource_ID will be automatically
deallocated.

The format for Terminate_Resource_Manager is:

CALL XCTRRM(resource_ID, input
return_code) output

Input Parameter

Use the resource_ID parameter to specify the resource name, previously
designated for management by this resource manager application on a call to
Identify_Resource_Manager (XCIDRM), for which service is being terminated.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)
indicates that Terminate_Resource_Manager completed successfully.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the virtual machine does not control the specified resource.
CM_PROGRAM_STATE_CHECK (25)
indicates that this is a TP-model application, so
Terminate_Resource_Manager cannot be called. See the discussion of
TP-model applications [‘The Relationship between VM and SAA CPI|
[Communications” on page 131[for more information.

Chapter 4. VM Extensions to CPI Communications 139



VM Extension Calls

Results of the Call

When return_code indicates CM_OK, the resource is no longer identified (any future
allocates to it will fail) and any conversations associated with the specified
resource_ID enter Reset state.

Adding XCTRRM to Our Server Program

Let’s add the Terminate_Resource_Manager call to SENDBACK EXEC in a
subroutine called TerminateRes. After the server receives the deallocation notice
from its partner, it will call TerminateRes to free up the resource this program has
been managing.

We will add a call to TerminateRes following the GetOut label so our program will
always terminate ownership of the resource before exiting. Just as we issue
Deallocate (CMDEAL) with deallocate_type set to CM_DEALLOCATE_ABEND from
the ErrorHandler subroutine to try to ensure that the conversation is deallocated by
the program, adding the TerminateRes call following the GetOut label will ensure
that we terminate ownership of the resource when an error has been detected as
well as during normal program termination. Note that all conversations associated
with the resource should be deallocated before calling
Terminate_Resource_Manager.

Your server program should now have the following lines:

[#==================================================================%
/* SENDBACK EXEC - Sample server application. */
[#=======s=s=smsmsmsmsssmsssmsssmsssmesssscssscsssssssssosssssosososkf
/*_._ ________________________________________________________________ */
/* Start a Receive Toop. */
/* Receive data, status, or both from conversation partner. */
S */

requested_file = "'
requested_length = 20
do until (CMRCV_return_code -= CM _OK) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED)
'"CMRCV conversation_ID receive buffer requested length',
'data_received received_length status_received',
'request_to_send received return_code'
CMRCV_return_code = return_code
say; say 'Routine called: CMRCV'
select
when (CMRCV_return_code
do

CM_OK) then

end
when (CMRCV_return_code = CM DEALLOCATED_NORMAL) then
do
call TraceParms
say; say 'Conversation deallocated by partner'

end
otherwise
call ErrorHandler 'CMRCV'
end
end
GetOut:
call TerminateRes
exit
[Hmmmm e Subroutines ---------------mmmm - */

140 z/vM: CPI Communications User’s Guide



VM Extension Calls

AbnormalEnd:

S */
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
[ m e e e e e */

deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms 'conversation_ID deallocate_type return_code'
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms

end
return
TerminateRes:
T */
/* TerminateRes will terminate ownership of the specified resource. */
T */

'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code == CM_0K) then
do
say
say '* ERROR: An error occurred during an XCTRRM call'
say ' The return_code was set to',
cm_return_code.return_code
end
else
call TraceParms 'resource_ID return_code'

return

Everything should work fine if you try out our latest change. The REQUESTR user
ID results should be:

Chapter 4. VM Extensions to CPI Communications 141



VM Extension Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
Routine called: CMSPLN
Routine called: CMSTPN

Would you Tike confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS RECEIVED

Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 49. Results of PROCESS EXEC Execution

The SERVR user ID results should be:

142 z/vM: CPI Communications User’s Guide



VM Extension Calls

Routine called: XCIDRM
resource_ID is GET
resource_manager_type is XC_PRIVATE
service_mode is XC_SINGLE
security_level flag is XC_REJECT_SECURITY_NONE
return_code is CM_OK

Routine called: CMACCP
Routine called: CMECT
Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED
Routine called: CMSEND
Routine called: CMSST
Routine called: CMSEND
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Conversation deallocated by partner
Routine called: XCTRRM
resource_ID is GET

return_code is CM_OK
Ready;

Figure 50. SENDBACK EXEC Execution as a Resource Manager

The Wait_on_Event (XCWOE) Call

The Wait_on_Event (XCWOE) call is used by an application to wait for a
communications event from one or more partners. In addition, Wait_on_Event can
reflect console interrupts and user events to the program.

Wait_on_Event is often used by resource managers that wait for some type of
interrupt to determine the next action that is to be performed.

Note: For multitasking applications, it is recommended that you use CMS event
management services and the VMCPIC system event, rather than
Wait_on_Event. You can find introductory information about using event
management services for CPI Communications P17}

The format for Wait_on_Event is:

CALL XCWOE(resource_ID, output
conversation_ID, output
event_type, output
event_info_length, output
event_buffer, output
return_code) output

Chapter 4. VM Extensions to CPI Communications 143



VM Extension Calls

144

Output Parameters

The resource_ID parameter returns the name of a resource (managed by the
calling resource manager application) for which an event has occurred. The value
returned is a name that was specified by this application on a previous
Identify_Resource_Manager (XCIDRM) call.

The resource_ID parameter contains a meaningful value only when the event_type
is XC_ALLOCATION_REQUEST, XC_RESOURCE_REVOKED, or
XC_USER_EVENT.

The conversation_ID parameter returns an identifier for the conversation on which
information is available to be received. The conversation_ID parameter contains a
meaningful value only when the event_type is XC_INFORMATION_INPUT.

The event_type parameter returns a value indicating the type of event that has
occurred. The event_type can be set to one of the following values:
XC_ALLOCATION_REQUEST (1)
indicates that a remote program is attempting to allocate a conversation to
this application. This event will continue to be reported by subsequent calls
to Wait_on_Event until you issue an Accept_Conversation (CMACCP) call
to process the event or until Terminate_Resource_Manager (XCTRRM) is
called to end management of the subject resource.
XC_INFORMATION_INPUT (2)
indicates that a communications partner is attempting to send data, status,
or both to this application. This event will continue to be reported by
subsequent calls to Wait_on_Event until you issue a Receive (CMRCYV) call
to process this event, until a Send_Error (CMSERR) or Deallocate
(CMDEAL) call is issued, or until Terminate_Resource_Manager is called to
end management of the subject resource.
XC_RESOURCE_REVOKED (3)
indicates that another program has revoked the resource being managed by
this resource manager application. The resource manager application must
issue a Terminate_Resource_Manager call when it completes all active
conversations. After it has been presented to the application, the
information associated with this event will no longer be available.
XC_CONSOLE_INPUT (4)
indicates that information was entered at the console attached to this virtual
machine and was placed in the event buffer parameter. After it has been
presented to the application, the information associated with this event will
no longer be available.
XC_REQUEST_ID (5)
indicates that a Shared File System asynchronous event has occurred. The
request ID is placed in the event_info_length parameter. After it has been
presented to the application, the information associated with this event will
no longer be available.
XC_USER_EVENT (6)
indicates the occurrence in the caller’s virtual machine of some event that is
of interest to the program calling Wait_on_Event. The event was detected
by another program, such as an interrupt handler, which in turn called the
Signal_User_Event (XCSUE) routine to queue the event for reporting by
Wait_on_Event. After it has been presented to the application, the
information associated with this event will no longer be available.

z/NM: CPI Communications User's Guide



VM Extension Calls

The event_info_length parameter returns an integer value with various meanings
depending on the particular event type. The event_info_length parameter can have
one of the following meanings:

+ If the event_type is XC_INFORMATION_INPUT, XC_CONSOLE_INPUT, or
XC_USER_EVENT, event_info_length indicates the number of data bytes that
are available to be received. When the event_type is XC_INFORMATION_INPUT,
the value of event_info_length should be used on a subsequent Receive call to
receive the data. For mapped conversations, this length may be greater than the
number of bytes sent by the remote program.

» If the event type is XC_CONSOLE_INPUT or XC_USER_EVENT,
event_info_length indicates the length of the data that is available in the
event_buffer.

+ If the event type is XC_REQUEST_ID, event info_length contains the actual
request ID.

The event_info_length parameter does not contain a meaningful value and should
not be examined if the event_type is XC_ALLOCATION_REQUEST or
XC_RESOURCE_REVOKED.

The event_buffer parameter returns the data, up to 130 bytes, that was either
entered at the console during a console input event or passed on a
Signal_User_Event call. The event_buffer parameter contains a meaningful value
only when the event _type is XC_CONSOLE_INPUT or XC_USER_EVENT.

Possible values for the return_code parameter are:
CM_OK (0)

indicates that the Wait_on_Event call completed successfully.
CM_PRODUCT_SPECIFIC_ERROR (20)

indicates a CMS error; check the CPICOMM LOGDATA file.
CM_PROGRAM_STATE_CHECK (25)

indicates that no conversations exist and no resources were identified.

Results of the Call

If multiple events are pending, they will be reported on successive calls to
Wait_on_Event (XCWOE) in the following order of priority:

User Event

Allocation request

Information input

Resource revoked notification

Request ID

Console input

o hrwD -

So, if a user event occurs, it will be presented on the next Wait_on_Event call
ahead of any other event types, even though they may have been pending for
longer than the user event.

This call does not cause a state change.

Adding XCWOE to Our Server Program

We will add the Wait_on_Event call to SENDBACK EXEC, following the
Identify_Resource_Manager (XCIDRM) call. The only event types our program
needs to wait for are allocation requests and information input.

Typically, Wait_on_Event is placed inside a loop, and a resource manager calling

Wait_on_Event would generally want to keep its end of a conversation in Receive
state.

Chapter 4. VM Extensions to CPI Communications 145



VM Extension Calls

146

When Wait_on_Event completes, the section of code designed to handle the
particular event that was reported gets executed. Then, Wait_on_Event can be
issued again to wait for the next event to occur.

We will need to restructure our server program when we add the Wait_on_Event
call. In effect, we are going to let our program be driven by the type of event that
gets reported. For that reason, we will want to make our program more generic.
Instead of adding each routine call to the program in the order that it will be issued,
we will group into a subroutine the calls that are related for a particular event.

We will need to move some of our existing code into subroutines. In addition,
because the resource_ID and conversation_ID parameters on the Wait_on_Event
call may not always contain meaningful information, we will want to keep the
resource name and conversation ID in two additional variables, save_res_ID and
save_con_ID, so that the information is not lost. That way, if an error is detected,
the program will always have access to the resource ID and conversation ID so it
can terminate management of the resource and deallocate the conversation.

We can also change the Receive (CMRCV) call so that the requested_length is set
to the value in the Wait_on_Event parameter event_info_length when there is
information to be received. That way, we will be requesting to receive the amount of
data that is available to the program. Keep in mind, however, that an application
using this value as the requested length may need to verify that it does not exceed
the maximum length for a single Receive call.

To keep the amount of screen output reasonable, we will not display the
event_buffer with the Wait_on_Event results. But we will continue to display the
resource_ID associated with both the Identify_Resource_Manager and the
Terminate_Resource_Manager calls.

Here is what the modified server program looks like:

[rmmmmmmmmmmmmmmmm ooy
/* SENDBACK EXEC - Sample server application. x/
[*=============m=mmmsmmsmmmmmmmommsomsomsmosoomooooosoomsomooooy
/*_‘_ ________________________________________________________________ */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
2 */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

e */
/* Identify the application as manager of the private resource. */
/* Remember the resource_ID value for later use in XCTRRM by */
/* storing it in save_res_ID. */
S */

save_res_ID = resource_ID
resource_manager_type = XC_PRIVATE
service_mode = XC_SINGLE
security_level_flag = XC_REJECT_SECURITY_NONE
'XCIDRM resource_ID resource_manager_type service mode',
'security_level flag return_code'
say; say 'Routine called: XCIDRM'
if (return_code —= CM_0K) then
do
say
say '* ERROR: An error occurred during an XCIDRM call'

z/NM: CPI Communications User's Guide



VM Extension Calls

say ' The return_code was set to',
cm_return_code.return_code

signal GetOut

end
call TraceParms 'resource_ID'
S S S */
/* Start continuous Wait_on_Event loop */
[ e m e e e e e */
requested_file = ''
do forever
T S S S Sy S S S S Sy SRSy ayS - */
/* Issue Wait_on_Event to wait for the next event to occur. */
J e m e e e e */

'XCWOE resource_ID conversation_ID event_type event_info_length',
'event_buffer return_code'
say; say 'Routine called: XCWOE'
if (return_code -= CM_OK) then call ErrorHandler 'XCWOE'
call TraceParms 'resource_ID conversation_ID event_type',
'event_info_length return_code'

£ 2 U U S U U U U SO U ST U YOI ST SO */
/* Choose next action based on type of event. */
2 */
select

when (event_type = XC_ALLOCATION_REQUEST) then
call AcceptConv
when (event_type = XC_INFORMATION_INPUT) then
call ReceivelInfo
otherwise
do
say
say '* ERROR: Wait_on_Event reported event_type',
xc_event_type.event_type

end
end /* select */
Ty Sy gy Sy S */
/* When notice of partner's deallocation is received, leave the */
/* Wait_on_Event Toop. */
P */

if (return_code = CM_DEALLOCATED_NORMAL) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
leave
end /* do forever */

GetQut:

call TerminateRes

exit
[Hmmmm e Subroutines -----------—---mmmmmm - */
AcceptConv:
Ty */
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID. */
L PRt */

'CMACCP conversation_ID return_code'

save_con_ID = conversation_ID

say; say 'Routine called: CMACCP'

if (return_code -= CM_0K) then call ErrorHandler 'CMACCP'
call TraceParms

ey */
/* Extract conversation_type to ensure the conversation is mapped. */
S */

'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'

if (return_code -= CM_0K) then call ErrorHandler 'CMECT'
call TraceParms

Chapter 4. VM Extensions to CPlI Communications 147



VM Extension Calls

/* 1f the conversation is basic, deallocate abnormally.

if (conversation type = CM_BASIC_CONVERSATION) then
do
say; say '* ERROR: Accepting and deallocating a basic',
‘conversation'

/* Call Send Error to notify partner that error was detected.
/* Since the program is going to exit, do not check the
/* Send_Error results for an error.

'CMSERR conversation_ID request_to_send_received return_code'
say; say 'Routine called: CMSERR'
if (return_code = CM_OK) then
call TraceParms
call AbnormalEnd
signal GetOut
end

return

ReceiveInfo:

/* Start a Receive loop.
/* Receive data, status, or both from conversation partner.

requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA_RECEIVED) |,
(data_received = CM_NO_DATA_RECEIVED)

'CMRCV conversation_ID receive_buffer requested_length',
'data_received received_length status_received',
'request_to_send_received return_code'

CMRCV_return_code = return_code

say; say 'Routine called: CMRCV'

select

when (CMRCV_return_code = CM OK) then
do
call TraceParms 'data_received status_received'
if (data_received —-= CM_NO_DATA RECEIVED) then
do
receive_buffer
requested_file
end

left(receive_buffer,received length)
requested file || receive buffer

/* Determine whether a confirmation request has been
/* received. If so, respond with a positive reply.

if (status_received = CM_CONFIRM RECEIVED) |,
(status_received = CM_CONFIRM_SEND RECEIVED) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
do

/* Issue Confirmed to reply to the partner.
2y
'"CMCFMD conversation_ID return_code'
say; say 'Routine called: CMCFMD'
if (return_code -= CM_OK) then call ErrorHandler 'CMCFMD
call TraceParms
end
if (status_received = CM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM_SEND_RECEIVED) then
call SendFile
else
if (status_received = CM_CONFIRM_DEALLOC RECEIVED) then
do

148 z/VM: CPI Communications User’s Guide

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/



VM Extension Calls

say; say 'Conversation deallocated by partner'

end
end
when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
do

call TraceParms 'data_received status_received'
say; say 'Conversation deallocated by partner'

end
otherwise
call ErrorHandler 'CMRCV'
end

end
return
SendFile:
Ty */
/* Read the contents of the requested file and send each Tine of */
/* the file to the partner program. */
L PRt */

address command 'EXECIO * DISKR' requested _file '(FINIS STEM LINE.'
do index = 1 to line.0
if (index = 1ine.0) then

2y */
/* Reset the send_type conversation characteristic just */
/* before the final Send Data call. */
Ly Pt */
do

send_type = CM_SEND_AND_PREP_TO_RECEIVE
'CMSST conversation ID send type return_code'
say; say 'Routine called: CMSST'
if (return_code —= CM_OK) then call ErrorHandler 'CMSST'
call TraceParms
end
buffer = line.index
send_length = Tength(buffer)
'CMSEND conversation _ID buffer send Tength',
'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms

end

return

TraceParms:
gy */
/* Display parameters and their values as passed to this subroutine.*/
Ty */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' lTeft(receive buffer,received _length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',

Chapter 4. VM Extensions to CPI Communications 149



VM Extension Calls

150

cm_request_to_send_received.request_to_send_received
when (parameter = 'send_type') then
say ' send type is' cm_send type.send_type
when (parameter = 'deallocate_type') then
say ' deallocate_type is' cm_deallocate_type.deallocate_type
when (parameter = 'conversation_type') then
say ' conversation_type is',
cm_conversation_type.conversation_type
when (parameter = 'resource_manager_type') then
say ' vresource_manager_type is',
XC_resource_manager_type.resource_manager_type
when (parameter = 'service_mode') then
say ' service_mode is' xc_service_mode.service_mode
when (parameter = 'security level flag') then
say ' security Tevel flag is',
xc_security level flag.security _level _flag
when (parameter = 'event_type') then

say event_type is' xc_event_type.event_type
otherwise
say ' ' parameter 'is' value(parameter)
end

end
/2y */
/* Extract the current conversation state of the local program */
ey */

/* Commenting out next four lines ...
'"CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation_state is =>',
cm_conversation_state.conversation_state
. ox/
return

AbnormalEnd:

2y */
/% Abnormally deallocate the conversation. Since we are exiting x/
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/* Use conversation ID in save_con_ID, from start of conversation. =*/
/ey */

deallocate_type = CM_DEALLOCATE_ABEND
conversation_ID = save_con_ID
'CMSDT conversation_ID deallocate type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms
end

return

TerminateRes:

] */
/* TerminateRes will terminate ownership of the specified resource. */
/* Use resource name stored in save_res_ID at start of program. */
== == ——— - ... */

resource_ID = save_res_ID
'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'

z/NM: CPI Communications User's Guide



VM Extension Calls

if (return_code -= CM _OK) then
do
say
say '* ERROR: An error occurred during an XCTRRM call'
say ' The return_code was set to',
cm_return_code.return_code
end
else
call TraceParms 'resource_ID'

return
Executing the programs now will show some slightly different output.

The following lines should be displayed at the requester’s terminal:

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
Routine called: CMSPLN
Routine called: CMSTPN

Would you Tike confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS RECEIVED

Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 51. Results of PROCESS EXEC Execution

These lines should appear at the server’s terminal:

Chapter 4. VM Extensions to CPI Communications 151



VM Extension Calls

Routine called: XCIDRM
resource_ID is GET

Routine called: XCWOE
resource_ID is GET
conversation_ID is
event_type is XC_ALLOCATION_REQUEST
event_info_length is 0
return_code is CM_0K

Routine called: CMACCP
Routine called: CMECT

Routine called: XCWOE
resource_ID is
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
event_info_length is 15
return_code is CM_OK

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: XCWOE
resource_ID is
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
event_info_Tength is 0
return_code is CM_OK

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED

Routine called: CMSST
Routine called: CMSEND

Routine called: XCWOE
resource_ID is
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
event_info_length is 0
return_code is CM_OK

Routine called: CMRCV
data_received is CM_NO DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner
Routine called: XCTRRM

resource_ID is GET
Ready;

status_received is CM_SEND _RECEIVEDRoutine called:

CMSEND

Figure 52. Results of XCWOE to SENDBACK EXEC

Notice that the first Wait_on_Event call completed with an allocation request for the
GET resource. Our resource manager could be managing more than just one
resource. In that case, the resource_ID parameter would let the program know for

which resource the request was intended.

152 2z/VM: CPI Communications User’s Guide




VM Extension Calls

After the resource manager accepts a conversation, information input events can
occur. These events identify the particular conversation on which the information is
available. There being only one conversation involved in our example, the
conversation_ID is always the same here.

Now that we are convinced the converted exec is working like the previous version
of our program, let’s try another option for the resource manager. Suppose there
were going to be frequent requests to the server for file contents. It might be
preferable for the server program to keep running and waiting for these requests
rather than terminating after each request is processed.

By identifying our resource with a service_mode of XC_SEQUENTIAL, the next
allocation request will be reported on a Wait_on_Event (XCWOE) call after the
previous conversation has been deallocated.

Our server needs just a couple of changes. We will not be terminating the resource
manager when the partner deallocates, so let's add support for console input events
to provide a way of stopping the program. That way, the server will continue to run
until an entry is made from the SERVR virtual machine’s console. Let’s also
comment out the LEAVE statement that was to be performed when an information
event resulted in a return_code of CM_DEALLOCATED_NORMAL or a
status_received value of CM_CONFIRM_DEALLOC_RECEIVED.

In addition, we will change the call to the TraceParms subroutine associated with
the Wait_on_Event call so that only the conversation_ID and event_type are
displayed. We will also drop resource_ID from the Identify_Resource_Manager and
Terminate_Resource_Manager TraceParms calls.

Here are the changes to the private resource manager:

[#=============sososssmooossosssoooooossooosoossooooooossooooooozooooooy
/* SENDBACK EXEC - Sample server application. */
[#=============sososs=ooossosssoossosssoossssosssoosoossszooooooszooooooy
/*_'_ ________________________________________________________________ */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
Ty S S S S Sy S U Sy S Sy Sy S Sy Sy —— */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

g */
/* Identify the application as manager of the private resource. */
/* Remember the resource ID value for later use in XCTRRM by */
/* storing it in save_res_ID. */
[ m e e e e e */

resource_ID = word(resource_ID 'GET',1)

save_res_ID = resource_ID

resource_manager_type = XC_PRIVATE

service_mode = XC_SEQUENTIAL

security level flag = XC_REJECT_SECURITY_NONE

'XCIDRM resource_ID resource_manager_type service_mode',
'security_level_flag return_code'

say; say 'Routine called: XCIDRM'

if (return_code == CM_OK) then

do
say
say '* ERROR: An error occurred during an XCIDRM call'
say ' The return_code was set to',

cm_return_code.return_code

Chapter 4. VM Extensions to CPI Communications 153



VM Extension Calls

signal GetOut
end
call TraceParms

/* Start continuous Wait_on_Event Toop.
/* Any console input will end the Toop.

2y

requested file = '!

do forever
say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'
ey
/* Issue Wait_on_Event to wait for the next event to occur.
2SS USSP,

'XCWOE resource_ID conversation_ID event_type event_info_length',
'event_buffer return_code'

say; say 'Routine called: XCWOE'

if (return_code -= CM _OK) then call ErrorHandler 'XCWOE'

call TraceParms 'conversation_ID event_type'

/* Choose next action based on type of event.
J == — == - — ..
select
when (event_type = XC_ALLOCATION_REQUEST) then
call AcceptConv
when (event_type = XC_INFORMATION_INPUT) then
call Receivelnfo
when (event_type = XC_CONSOLE_INPUT) then

leave
otherwise

do
say
say '~ ERROR: Wait_on_Event reported event_type',

Xxc_event_type.event_type
end
end /* select */

/* When notice of partner's deallocation is received, leave the
/* Wait_on_Event Toop.
2
/* Commenting out next three lines ...
if (return_code = CM_DEALLOCATED_NORMAL) |,
(status_received = CM_CONFIRM DEALLOC_RECEIVED) then

leave

oo %/
end /* do forever x/

GetOut:
call TerminateRes
exit

/* Start a Receive Tloop.
/* Receive data, status, or both from conversation partner.

requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA_RECEIVED) |,
(data_received = CM_NO_DATA RECEIVED)
'CMRCV conversation_ID receive_buffer requested_length',
'data_received received length status received',

154 z/vM: CPI Communications User’s Guide



VM Extension Calls

'request_to_send_received return_code'
CMRCV_return_code = return_code
say; say 'Routine called: CMRCV'
select
when (CMRCV_return_code = CM_OK) then
do
call TraceParms 'data_received status_received'
if (data_received == CM_NO_DATA RECEIVED) then
do
receive_buffer
requested_file

left(receive_buffer,received length)
requested file || receive buffer

end
g */
/* Determine whether a confirmation request has been x/
/* received. If so, respond with a positive reply. */
2y */

if (status_received = CM_CONFIRM RECEIVED) |,
(status_received = CM_CONFIRM_SEND RECEIVED) |,
(status_received = CM_CONFIRM DEALLOC_RECEIVED) then

do
[ = — —mm m e */
/* Issue Confirmed to reply to the partner. */
/ey */

'"CMCFMD conversation_ID return_code'
say; say 'Routine called: CMCFMD'
if (return_code -= CM_OK) then call ErrorHandler 'CMCFMD'
call TraceParms
end
if (status_received
(status_received
call SendFile
else
if (status_received = CM_CONFIRM_DEALLOC RECEIVED) then
do
say; say 'Conversation deallocated by partner'
requested_file = ''

CM_SEND_RECEIVED) |,
CM_CONFIRM_SEND_RECEIVED) then

end
end
when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
do

call TraceParms 'data_received status_received'
say; say 'Conversation deallocated by partner'
requested_file = ''

end

otherwise
call ErrorHandler 'CMRCV'
end
end

return

Now, in addition to starting the programs the usual way from the requester virtual
machine, you can independently start the resource manager. Recall that the first
change we made to SENDBACK in this section was to add the line

resource_ID = word(resource ID 'GET',1)

before the Identify_Resource_Manager call. This line lets SENDBACK use the
resource ID passed to it if it is started as a result of an allocation request from
PROCESS EXEC or, if it is started from the SERVR console, supply the resource
ID itself. Let’s try the latter case now. From the SERVR user ID, enter

sendback

Chapter 4. VM Extensions to CPI Communications 155



VM Extension Calls

You should see:

sendback

Routine called: XCIDRM

Waiting for an event to occur. Enter "QUIT" to exit.

Figure 53. Results of Starting SENDBACK EXEC on the SERVR User ID

The server program will wait until an allocation request or until QUIT (or anything
else, for that matter) is entered from the server virtual machine’s console. Now start
the requester program, as usual, with

process getfile

The results should be the same as the last time we ran the program, except that
the server does not end when the requester program issues Deallocate (CMDEAL).

You can start the requester exec again, and its allocation request will be handled
correctly by the server. Try it a few times, and when you would like to terminate the
resource manager, simply enter QUIT at the console for the server virtual machine.
You will then see:

QUIT

Routine called: XCWOE
conversation_ID is
event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 54. Results of Entering QUIT at the SERVR Console

The resource manager terminated ownership of the GET resource and ended. As
already mentioned, you can still start the programs from the requester virtual
machine, but the server program will no longer terminate by itself. Rather, it will
continue waiting for an event to occur.

Security Considerations

When we talk about security in this book, we are referring to access security
information for a conversation. This conversation security information includes a
user ID and possibly a password that can be sent to the remote LU (only the user
ID becomes available to the remote application). This security information verifies
the identity of the partner allocating the conversation. The allocating program must
supply adequate security information, which is verified by the receiving LU.

SAA CPI Communications does not address the issue of conversation security
except to establish a default level of security known as SAME. This means that only
the access security ID (user ID) that was used to invoke the local program is sent
to the remote LU and transaction program. In addition to conversation security
SAME, VM provides NONE and PGM.

SECURITY(NONE)
Indicates that the local program is not sending any access security

156 z/VM: CPI Communications User’s Guide



VM Extension Calls

information, nor is CP providing a user ID on the allocation request. No user
ID information is forwarded, so the remote program cannot determine if the
allocation request is authorized.

A public bulletin board would be an example of an application where access
authorization is not required.

SECURITY(SAME)
Indicates that the local program is sending neither a user ID nor a
password on its allocation. In VM, the user ID that invoked the local
program is sent to the remote LU for validation. The remote LU uses the
$SERVER$ NAMES file to validate the authorization of the allocation
request.

While SAA CPI Communications establishes SECURITY(SAME) as the
default security level, it provides no way to examine or change the security
level.

SECURITY(SAME) should be used when a program requests services for
another program. We will be using SECURITY(SAME) when we discuss the
routines that pertain to intermediate servers.

SECURITY(PGM)

Indicates that the local program is sending a user ID and password in its
allocation request to access a defined resource for a given conversation.
When setting the access security information, any user ID and password
combination that is valid at the target LU or within the TSAF collection can
be specified. The remote LU is responsible for validating both the user ID
and password prior to accepting the allocation request. The $SERVER$
NAMES file contains a list of authorized user IDs for a given private
resource. Only the user ID is made available to the remote program.

Side information as defined by SAA CPI Communications does not include any
reference to conversation security. VM provides for additional tags in its CMS
communications directory that allow the specification of conversation security
information. These tags are:

Tag What Value the Tag Specifies

:security. The security type of the conversation (NONE, SAME, or PGM).
:userid. The access security user ID (used for security type PGM only).
:password. The access security password (used for security type PGM only).

Conversation security information can be specified in other ways as well. The
conversation security type can be explicitly set in the program using the
Set_Conversation_Security_Type (XCSCST) call. The security user ID and
password can be specified in two other ways: using Set calls in the program or by
putting an APPCPASS statement in the virtual machine’s CP directory. We will
discuss these Set calls in the next three sections. See the following FYI box for
more information on the APPCPASS statement.

Chapter 4. VM Extensions to CPI Communications 157



VM Extension Calls

— FYI: Security Information and the APPCPASS Statement

If there are concerns about placing security information in a file when
SECURITY(PGM) is used, the values can be provided in an APPCPASS
statement in the virtual machine’s CP directory. An APPCPASS statement
entry does not take precedence over a value provided in either side
information or on an explicit Set call. Issuing one of the explicit Set calls does
override, for the specified conversation, any corresponding information
supplied in side information and takes precedence over an APPCPASS
statement.

If the security type is SECURITY(PGM) and only a user ID has been provided,
or neither a user ID nor a password has been provided, either in side
information or through an explicit Set call, then the CP directory is checked for
an APPCPASS statement to supply the missing values. When the security
type is SECURITY(PGM) and only a password is provided, a
CM_PRODUCT_SPECIFIC_ERROR occurs at allocation time.

The following table summarizes when the CP directory is checked for an
APPCPASS statement to supply missing values. The first two columns show
what, if any, security information is provided in side information or through an
explicit Set call. The last column indicates the result.

User ID Password Result
yes no APPCPASS checked for password, based on user_ID
yes yes APPCPASS not checked
no no APPCPASS checked for user ID and password, based
on LU_name
no yes Product-specific error returned on Allocate (CMALLC)

See the [z/VM: Connectivity| book for more information on the APPCPASS
statement.

The Set_Conversation_Security_Type (XCSCST) Call
The Set_Conversation_Security_Type (XCSCST) call sets the

conversation_security_type characteristic for a given conversation, overriding the

value assigned with the Initialize_Conversation (CMINIT) call.

Set_Conversation_Security_Type can be called only by the program that initiates a
conversation (using the Initialize_Conversation call). The call must be issued while
in Initialize state, prior to the Allocate (CMALLC) call for the specified conversation.

On VM, a security type can be specified in side information (a communications
directory) with the :security. tag. If a value is not provided in side information, the
default security type of SAME is assigned during conversation initialization. An
application needs to issue Set_Conversation_Security_Type only if a value was not
set in side information and the default value is not desired.

The format for Set_Conversation_Security_Type is:

CALL XCSCST(conversation_ID, input
conversation_security_type, input
return_code) output

158 2z/VM: CPI Communications User’s Guide




VM Extension Calls

Input Parameters
Use the conversation_ID parameter to specify the conversation identifier.

Use the conversation_security_type parameter to specify the kind of access
security information to be sent to the remote LU for validation. If present, the
security information consists of either a user ID or a user ID and a password. The
conversation_security_type can be set to one of these values:
XC_SECURITY_NONE (0)
indicates that no access security information is being included in the
allocation request for the conversation.
XC_SECURITY_SAME (1)
indicates that the access user ID of the local program’s virtual machine is
being sent to the target LU and transaction program.
XC_SECURITY_PROGRAM (2)
indicates that a user ID and password are being supplied and sent in the
allocation request for the conversation. The target transaction program can
access only the access security user ID.

Output Parameter
Possible values for the return_code parameter are:
CM_OK (0)
indicates that the Set_Conversation_Security_Type call executed
successfully.
CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the
conversation_security _type is set to an undefined value.
CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation in not in Initialize state.

Results of the Call
When return_code is anything other than CM_OK, the conversation_security_type is
unchanged. This call does not cause a state change.

Adding XCSCST to Our Requester Program

Let’s set the security type for this conversation to XC_SECURITY_PROGRAM with
the Set_Conversation_Security_Type routine. We will add the call immediately
following the Initialize_Conversation call in the PROCESS EXEC.

[¥=======================================================z=========zx/
/* PROCESS EXEC - Sample file requester application. */
/*:::===============================================================*/
/*_'. ________________________________________________________________ */
/* Initialize the conversation. */
Ty */

'CMINIT conversation_ID sym dest _name return_code'

say; say 'Routine called: CMINIT'

if (return_code == CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms

Ty Sy Sy Sy Sy Sy Sy Yy Sy S RS */
/* Set the conversation_security_type explicitly. */
J e mm e e e e e */

conversation_security_type = XC_SECURITY_PROGRAM

'XCSCST conversation_ID conversation_security_type return_code'
say; say 'Routine called: XCSCST'

if (return_code -= CM_0K) then call ErrorHandler 'XCSCST'

call TraceParms 'conversation_ID conversation_security_type',

Chapter 4. VM Extensions to CPI Communications 159



VM Extension Calls

160

'return_code'

2y */
/* Set the partner_ LU name explicitly. */
]y */

partner_LU name = 'xUSERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU_name',
'partner_LU name_Tength return_code'
say; say 'Routine called: CMSPLN'
if (return_code -= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms

== == ——— - ... */
/* Display parameters and their values as passed to this subroutine.*/
2y */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' lTeft(buffer,send length)
when (parameter = 'receive_buffer') then
say ' buffer is' Teft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'sync_level') then
say ' sync_level is' cm_sync_Tlevel.sync_level
when (parameter = 'prepare_to receive_type') then
say ' prepare_to_receive_type is',
cm_prepare_to_receive_type.prepare_to_receive_type
when (parameter = 'deallocate type') then
say ' deallocate_type is' cm_deallocate_type.deallocate_type
when (parameter = 'conversation_security type') then

say conversation_security_type is’',
xc_conversation_security_type.conversation_security_type
otherwise
say ' ' parameter 'is' value(parameter)
end

end
S */
/* Extract the current conversation state of the local program. */
T S S Sy S S Sy S Sy Sy USSRy S —— */

/* Commenting out next four Tines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
say ' conversation_state is =>',
cm_conversation_state.conversation_state

. %/

return

Recall that we can provide the user ID and password in side information by adding
the :userid. and the :password. tags. Alternatively, we can explicitly provide these

z/NM: CPI Communications User's Guide



VM Extension Calls

values within the application by using the Set_Conversation_Security_User_ID
(XCSCSU) and Set_Conversation_Security_Password (XCSCSP) calls.

The Set_Conversation_Security_User_ID (XCSCSU) Call

The Set_Conversation_Security_User_ID (XCSCSU) call sets the access security
user ID for a given conversation.

Set_Conversation_Security_User_ID can be called only by the program that initiates
a conversation (using the Initialize_Conversation (CMINIT) call). The call must be
issued while in Initialize state, prior to the Allocate (CMALLC) call for the specified
conversation, and is only valid when the conversation_security _type is
XC_SECURITY_PROGRAM.

The format for Set_Conversation_Security_User_ID is:

CALL XCSCSU(conversation_ID, input
security_user_ID, input
security_user_ID_length, input
return_code) output

Input Parameters
Use the conversation_ID parameter to specify the conversation identifier.

Use the security_user_ID parameter to specify the access security user ID that will
be sent to the remote LU. This value will be available to the remote transaction
program for validation.

Use the security user ID length parameter to specify the length of the security
user ID. This length value can range from zero to eight. If the
security_user_ID_length is zero, the security user ID is set to null and the
security_user_ID parameter is ignored.

Output Parameter

Possible values for the return_code parameter are:

CM_OK (0)
indicates that the Set_Conversation_Security_User_ID call executed
successfully.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the value
specified in the security_user_ID_length parameter is less than zero or
greater than eight.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state or that the
conversation_security_type is not XC_SECURITY_PROGRAM.

Results of the Call

When return_code indicates CM_OK, the access security user ID specified on this
routine overrides a user ID in the communications directory and causes an access
security user ID specified in a directory APPCPASS statement to be ignored. If the
security_user_ID_length parameter is specified as zero, however, the APPCPASS
directory statement is checked during allocation processing. This call does not
cause a state change.

Chapter 4. VM Extensions to CPI Communications 161



VM Extension Calls

Adding XCSCSU to Our Requester Program

While an APPCPASS directory statement may be the preferred location for security
information in most cases, in our example we will set the access security user ID in
the program with the Set_Conversation_Security_User_ID routine.

Let’s add the call to the requester's PROCESS EXEC immediately after the
Set_Conversation_Security_Type (XCSCST) call. For our example, we will use the
requester’s user ID, REQUESTR. You will need to substitute the user ID for your
requester virtual machine if you used a different name.

/*:::===============================================================*/
/* PROCESS EXEC - Sample file requester application. */
[#================c==ss=ssssssssssosssssssssssssssssssssssssssszsszsk/
/*_'_ ________________________________________________________________ */
/* Set the conversation_security_type explicitly. */
S */

conversation_security_type = XC_SECURITY_PROGRAM

'XCSCST conversation_ID conversation_security type return_code'

say; say 'Routine called: XCSCST'

if (return_code >= CM_OK) then call ErrorHandler 'XCSCST'

call TraceParms 'conversation_ID conversation_security type',
'return_code’

P */
/* Set the security_user_ID explicitly. */
T S */

security_user_ID = 'REQUESTR'

security user_ID length = length(security user_ID)

'XCSCSU conversation_ID security_user_ID security_user_ID length',
'return_code'

say; say 'Routine called: XCSCSU'

if (return_code == CM_0K) then call ErrorHandler 'XCSCSU'

call TraceParms 'conversation_ID security user_ID',

'security_user_ID_length return_code'

== === —— ... */
/* Set the partner LU name explicitly. */
/2y */

partner_LU name = '+USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU name',
'partner_LU _name_Tength return_code'
say; say 'Routine called: CMSPLN'
if (return_code -= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms

Before we can try the changes we have made, we still need to set the password
value.

The Set_Conversation_Security_Password (XCSCSP) Call

The Set_Conversation_Security_Password (XCSCSP) call sets the access security
password for a given conversation. The Set_Conversation_Security_Password
routine can be called only while in Initialize state. This call is valid only when the
conversation_security_type is XC_SECURITY_PROGRAM.

The format for Set_Conversation_Security_Password is:

CALL XCSCSP(conversation_ID, input
security_password, input
security_password_length, input
return_code) output

162 2z/VM: CPI Communications User’s Guide



VM Extension Calls

Input Parameters
Use the conversation_ID parameter to specify the conversation identifier.

Use the security _password parameter to specify the access security password
that will be passed to the remote LU for validation.

Use the security_password_length parameter to specify the length of the security
password. This length value can range from zero to eight. If the password length is
zero, the password is set to null and the security_password parameter is ignored.

Output Parameter

Possible values for the return_code parameter are:

CM_OK (0)
indicates that the Set_Conversation_Security_Password call executed
successfully.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the value
specified for the security_password_length is less than zero or greater than
eight.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation is not in Initialize state or the
conversation_security_type is not XC_SECURITY_PROGRAM.

Results of the Call

When return_code indicates CM_OK, the access security password specified on
this routine overrides a password in the communications directory and causes an
access security password specified in a directory APPCPASS statement to be
ignored. If the security_password_length parameter is specified as zero, however,
the APPCPASS directory statement is checked during allocation processing. This
call does not cause a state change.

Adding XCSCSP to Our Requester Program

Having used a Set_Conversation_Security_User_ID (XCSCSU) call to specify the
security user ID, we now need to provide the access security password, as well.
Let’'s use the Set_Conversation_Security_Password routine to set that password
value in the program.

We will add the call to the requester’'s exec, following the
Set_Conversation_Security_User_ID routine. For the sample program shown in this
book we used REQUESTR for the user ID, so we will supply the REQUESTR
password. You will need to substitute the password for your requester virtual
machine.

/*:::===============================================================*/
/* PROCESS EXEC - Sample file requester application. */
.
/*_._ ________________________________________________________________ */
/* Set the security_user_ID explicitly. */
ey */

security_user_ID = 'REQUESTR'

security user_ID length = length(security user_ID)

'XCSCSU conversation_ID security_user_ID security_user_ID_length',
'return_code’

say; say 'Routine called: XCSCSU'

if (return_code == CM_OK) then call ErrorHandler 'XCSCSU'

Chapter 4. VM Extensions to CPI Communications 163



VM Extension Calls

call TraceParms 'conversation_ID security user_ID',
'security_user_ID Tength return_code'

P */
/* Set the security_password explicitly. */
T S */

security_password = 'PASSWORD'

security_password_length = length(security password)

'XCSCSP conversation_ID security_password security_password_length',
'return_code'

say; say 'Routine called: XCSCSP'

if (return_code == CM_0K) then call ErrorHandler 'XCSCSP'

call TraceParms 'conversation_ID security_password',

'security_password_length return_code’

== === —— ... */
/* Set the partner LU name explicitly. */
ey */

partner_LU name = '+USERID SERVR'
partner_LU_name_length = length(partner_LU_name)
'CMSPLN conversation_ID partner_LU name',
'partner_LU _name_Tength return_code'
say; say 'Routine called: CMSPLN'
if (return_code -= CM_OK) then call ErrorHandler 'CMSPLN'
call TraceParms

We are finally ready to try out our program with the new security level. As always,
start things off with

process getfile

from the requester. The resulting screen display for the requester will be:

164 z/VM: CPI Communications User’s Guide



VM Extension Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT

Routine called: XCSCST
conversation_ID is 00000000
conversation_security_type is XC_SECURITY_PROGRAM
return_code is CM_0K

Routine called: XCSCSU
conversation_ID is 00000000
security_user_ID is REQUESTR
security_user_ID Tength is 8
return_code is CM_OK

Routine called: XCSCSP
conversation_ID is 00000000
security_password is PASSWORD
security_password_length is 8
return_code is CM_OK

Routine called: CMSPLN

Routine called: CMSTPN

Would you like confirmation processing? (Y/N)
N

Routine called: CMALLC

Routine called: CMSEND

Routine called: CMSPTR

Routine called: CMPTR

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_SEND_RECEIVED

Routine called: CMDEAL
Ready;

Figure 55. Results from PROCESS EXEC

The server will display these lines:

Chapter 4. VM Extensions to CPI Communications 165



VM Extension Calls

Routine called: XCIDRM
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is
event_type is XC_ALLOCATION_REQUEST
Routine called: CMACCP
Routine called: CMECT
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_NO DATA RECEIVED
status_received is CM_SEND_RECEIVED
Routine called: CMSEND
Routine called: CMSST
Routine called: CMSEND
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV

data_received is CM_NO_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Figure 56. Results from SENDBACK EXEC (Part 1 of 2)

166 z/V/M: CPI Communications User’s Guide



VM Extension Calls

Conversation deallocated by partner

Waiting for an event to occur. Enter "QUIT" to exit.
QUIT

Routine called: XCWOE
conversation_ID is
event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 56. Results from SENDBACK EXEC (Part 2 of 2)

Intermediate Servers

It is time to turn our attention to intermediate servers. An intermediate server is a
program that handles communications requests to a resource manager program on
behalf of a user program. The user program can be referred to as a client of the
intermediate server. In our example, the requester PROCESS EXEC allocates a
conversation to the server SENDBACK EXEC. Now, if SENDBACK EXEC does not
process the file request, but instead allocates a conversation to another program
that will actually handle the request, SENDBACK EXEC would take on the role of
an intermediate server and PROCESS EXEC would be a client program. This is
how the programs we are writing will work, but these are rather simple programs
whose purpose is to illustrate how to use the calls.

A more realistic scenario would be a server that, while performing some task for a
user, needs to access a resource that is controlled by another resource manager.
Security considerations may dictate that the server handling user requests not be
authorized to access any other resources on its own. Thus, the server would need
to be able to pass along the user ID of the requester for whom it is doing the work
so the resource manager controlling the needed resource could determine who was
requesting a particular resource.

Another use for an intermediate server in VM might be to control access to a group
of resources. This intermediate server could be used to do security validation and to
direct user requests to appropriate server virtual machines.

Now we will have three communications programs. The intermediate server needs
to be a bit more sophisticated than either of the other two programs. In fact, the
requester and the new (final) server will hardly change from the previous section.
The following pseudocode summarizes how the intermediate server program will be
structured.

Chapter 4. VM Extensions to CPI Communications 167



VM Extension Calls

Table 5. Overview of Sample Intermediate Server Program

SERVR User ID

Identify_Resource_Manager
do forever
Wait_on_Event
select on event type
when allocation request
Accept_Conversation (ConvA)
if conversation type is basic
Send_Error
else
Initialize_Conversation
Allocate (ConvB)
when information input
-Receive loop-
Receive (on conversation in Receive state)
if confirmation requested
Confirmed
if complete data received
Send_Data (on conversation in Send state)
if send control received (on conversation in Receive state)
Prepare_To_Receive (on conversation in Send state)
-end Receive loop-
when console input
leave

end select
end
Terminate_Resource_Manager

Setting Up the SERVR2 Virtual Machine

168

At this point, we are ready to begin using SERVR2, our third user ID. SERVR2 is
going to take on the role of the resource manager that has been performed by the
SERVR virtual machine. You will need copies of the following SERVR files on
SERVR2:

« SENDBACK EXEC (rename to SENDSERV)

« TEST FILE

+ PROFILE EXEC

Let's rename the SENDBACK EXEC on SERVR2 to be SENDSERYV EXEC. Modify
the lines in TEST FILE to indicate that they reside on the final server. The reason
we want to copy the PROFILE EXEC over to the new user ID is that it contains
some important lines that we added so our server virtual machine could function
properly. If you do not want to replace an existing PROFILE EXEC file on the
SERVR2 user ID, simply copy the three SET commands we added in
[‘Starter Set CPI Communications Calls.’]

On SERVR2, create a $SERVER$ NAMES file containing these lines (and
substituting your user ID, if appropriate):

:nick.GET :Tist.SERVR
:module.SENDSERV

Although we are using GET for the nickname in both servers, it is not required that
the names be the same. It is just simpler for our purposes in this book.

z/NM: CPI Communications User's Guide



VM Extension Calls

We will want the resource manager SENDSERV EXEC on the SERVR2 user ID to

terminate when the conversation that started it is deallocated. We previously

commented out the section of code that issues a LEAVE statement if return_code is

CM_DEALLOCATED_NORMAL or status_received is

CM_CONFIRM_DEALLOC_RECEIVED. Let’'s remove the comments from that part

of the program to restore that function.

/* Start continuous Wait_on_Event loop.
/* Any console input will end the Toop.

requested_file
do forever

say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'

'XCWOE resource_ID conversation_ID event_type event_info_length',

'event_buffer return_code'
say; say 'Routine called: XCWOE'
if (return_code == CM_OK) then call ErrorHandler 'XCWOE'
call TraceParms 'conversation_ID event_type'

/* Choose next action based on type of event.

/2y

select
when (event_type = XC_ALLOCATION_REQUEST) then
call AcceptConv
when (event_type = XC_INFORMATION_INPUT) then
call Receivelnfo
when (event_type = XC_CONSOLE_INPUT) then

leave
otherwise

do
say
say '~ ERROR: Wait_on_Event reported event_type',

xc_event_type.event_type
end
end /* select */

/* When notice of partner's deallocation is received, leave the

/* Wait_on_Event loop.

/*"'"'"T"""""""""'j """""""""""""""""

Fu—Lemmerithng—suwtaes—three—Hnres——
if (return_code = CM_DEALLOCATED NORMAL) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
Teave
-
end /* do forever =*/

GetOut:
call TerminateRes
exit

Chapter 4. VM Extensions to CPl Communications

*/
*/

169



VM Extension Calls

That completes the set up required for the SENDSERV EXEC to handle file
requests on the resource manager virtual machine. Now, let’s turn to the SERVR
user ID and the program that will become the intermediate server.

Converting the SERVR Virtual Machine into an Intermediate Server

170

With a little modification, our existing private resource manager program can be
turned into an intermediate server program. The intermediate server will be dealing
with two distinct conversations. One conversation, ConvA, will be between the
requester PROCESS EXEC and the intermediate server SENDBACK EXEC, and
the other, ConvB, will be between SENDBACK EXEC and the new resource
manager, SERVR2's SENDSERV EXEC, as shown in [Figure 57}

REQUESTR SERVR SERVR2

ConvA ConvB
PROCESS SENDBACK SENDSERV

Figure 57. SENDBACK Must Maintain Two Different Conversations

The program, therefore, will need to keep track of two conversation IDs and decide
which conversation ID should be used on a particular CPI Communications call.

A summary of the processing to be performed by the SERVR virtual machine
follows.

The intermediate server receives an allocation request from the requester program
PROCESS EXEC. After accepting the conversation, SENDBACK EXEC can start
another conversation with the resource manager program SENDSERV. We will add
a new StartConv subroutine to perform that function. In addition, we will include
conversation_ID on the TraceParms subroutine call (for the Initialize_Conversation
(CMINIT) call) in StartConv to see what value gets assigned to the conversation
being allocated. Similarly, we will add conversation_ID back to the TraceParms call
made following the Accept_Conversation call.

Within the Receivelnfo loop, we will add calls to a new subroutine EndConv that
deallocates the conversation with the resource manager when the intermediate
server receives notification that the requester program has issued Deallocate
(CMDEAL).

Our intermediate server will receive two types of data, the file request from the user
program and the file contents from the resource manager. In both cases, the
intermediate server needs to forward the data it receives on one conversation to its
partner on the other conversation.

When complete data is received, the SendInfo subroutine is called. At that time, the
conversation_ID variable still identifies the conversation on which data was last
received. So, the first step in the Sendinfo subroutine is to set con_ID, which is the
variable that will now be used to specify the conversation ID on the Send_Data call,
to the value of the other conversation, as shown in|Figure 58 on page 171 In that

z/NM: CPI Communications User's Guide



VM Extension Calls

way, the program can forward the data to its other partner.

REQUESTR SERVR SERVR2
PROCESS SENDBACK SENDSERV
ConvA ConvB
CMSEND » | CMRCV CMSEND » | CMRCV

conversation_ID = ConvA
con_ID = ConvB

Figure 58. SENDBACK Assigns conversation_ID=ConvA and con_ID=ConvB

As long as one partner is sending data, the intermediate server will need to remain
in Receive state for the conversation with that partner and remain in Send state for
the other conversation. This will allow the intermediate server to pass the
information it gets on one conversation along to the partner on the other
conversation.

We will add a new subroutine named PrepReceive, which will be called when send
control notification is received. We will code our programs in such a way that the
intermediate server’s entering Send state on one of its conversations indicates that
all the data has been received from the partner that transferred send control. The
intermediate server, which forwards data as it receives it, is now finished forwarding
data on its other conversation and can transfer send control to the partner on that
other conversation. This state change is accomplished with a call to the
Prepare_To_Receive subroutine on that other conversation. We will display only the
conversation_ID on the call to TraceParms.

Because both complete data and send control may be received at the same time,
the program needs to protect the conversation_ID used on the last Receive call.
Hence, the reason for the new variable con_I/D being used in both SendInfo and
PrepReceive subroutines.

In the Receivelnfo subroutine, when the data_received parameter is set to a value
other than CM_NO_DATA_RECEIVED, we will want to append the contents of the
Receive (CMRCV) buffer to the send_data variable to handle partial records. The
send_data contents will be used later when the data is forwarded to the other
partner. We know that for this application, data will be sent to the intermediate
server by only one partner at a time, because the other partner is in Receive state
receiving the forwarded data from the intermediate server. The send_data variable
is cleared before the Wait_on_Event loop is entered and after a complete data
record is forwarded to the other partner.

To make it a little easier to sort out the conversation on which the program is
sending data, we will update the TraceParms call for Send_Data to display the
conversation_ID used.

After a normal termination is received by the intermediate server, the conversation
between the file requester and the intermediate server is over. We will want to add
a Deallocate call to deallocate the conversation between the intermediate server
and the resource manager. Again, we will only show the conversation_ID with the
call to TraceParms for the new Deallocate call.

Chapter 4. VM Extensions to CPl Communications 171



VM Extension Calls

Finally, we must update the ErrorHandler subroutine so that it will attempt to
abnormally deallocate both conversations if an error is detected.

[*==================================================================x% |
/* SENDBACK EXEC - Sample intermediate server application. */
[*===================s=ss=sss=ssssssssssssssssssoosooooooooooooooooooooy
/2y */
/* Start continuous Wait_on_Event Toop. */
/* Any console input will end the Toop. x/
ey */
send_data = '’
do forever
say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'
J == — = — - — .. */
/* Issue Wait_on_Event to wait for the next event to occur. */
/2y */

'XCWOE resource_ID conversation_ID event type event_info_length',
'event_buffer return_code'

say; say 'Routine called: XCWOE'

if (return_code -= CM_OK) then call ErrorHandler 'XCWOE'

call TraceParms 'conversation_ID event_type'

2y */
/* Choose next action based on type of event. x/
S Sy S S S SRy S Sy S Sy S S S ——— */
select
when (event_type = XC_ALLOCATION_REQUEST) then
do

call AcceptConv
call StartConv
end
when (event_type = XC_INFORMATION_INPUT) then
call Receivelnfo
when (event_type = XC_CONSOLE_INPUT) then

/2y */
/* Leave the Wait_on_Event Toop. */
/2y */
leave
otherwise
do
say

say 'x ERROR: Wait_on_Event reported event_ type',
xc_event_type.event_type

end
end /* select */
Sy Sy S S S S S - */
/* When notice of partner's deallocation is received, leave the  */
/* Wait_on_Event Toop. */
2y */

/* Commenting out next three lines ...
if (return_code = CM_DEALLOCATED NORMAL) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
Teave
. */

end /* do forever =/
GetOut:

call TerminateRes
exit

/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID1. */

172 z/vM: CPI Communications User’s Guide



VM Extension Calls

'CMACCP conversation_ID return_code'

save_con_ID1 = conversation_ID

say; say 'Routine called: CMACCP'

if (return_code -= CM_0OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID'

L PRt */
/* Extract conversation_type to ensure the conversation is mapped. */
gy */

'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'

if (return_code -= CM_0OK) then call ErrorHandler 'CMECT'
call TraceParms

L PRt */

/% 1f the conversation is basic, deallocate abnormally. */

ey */

if (conversation_type = CM_BASIC_CONVERSATION) then

do
say; say '* ERROR: Accepting and deallocating a basic',
'conversation'

L Pt */
/* Call Send Error to notify partner that error was detected. */
/* Since the program is going to exit, do not check the */
/* Send_Error results for an error. */
gy */

'CMSERR conversation_ID request_to_send_received return_code'
say; say 'Routine called: CMSERR'
if (return_code = CM_OK) then
call TraceParms
call AbnormalEnd
signal GetOut

end
return
StartConv:
T */
/* StartConv will establish a conversation with the resource */
/* manager on behalf of the file requester. */
/* First, initialize the conversation to the resource manager. */
Ty Ay Sy Sy Sy Sy Sy Sy Yy Sy S S */

sym_dest_name = 'GETFILE'

'CMINIT conversation_ID sym_dest_name return_code'
save_con_ID2 = conversation_ID

say; say 'Routine called: CMINIT'

if (return_code ~= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID'

Ty Ay Sy Sy Sy Sy Sy Sy Ry Sy S S */
/* Allocate conversation. Conversation_ID still equals save_con_ID2.*/
[ mm e e e e mmme e */

'CMALLC conversation_ID return_code’
say; say 'Routine called: CMALLC'
if (return_code ~= CM_OK) then call ErrorHandler 'CMALLC'

return

Receivelnfo:

e */
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
Ty */

requested length = event_info_length
do until (data_received = CM_COMPLETE_DATA RECEIVED) |,
(data_received = CM_NO_DATA_RECEIVED)
'"CMRCV conversation_ID receive _buffer requested_length',

Chapter 4. VM Extensions to CPl Communications

173



VM Extension Calls

'data_received received_length status_received',
'request_to_send_received return_code'
CMRCV_return_code = return_code
say; say 'Routine called: CMRCV'
select
when (CMRCV_return_code = CM_OK) then
do
call TraceParms 'data_received status_received'
if (data_received -= CM_NO_DATA_RECEIVED) then
do
receive_buffer = left(receive_buffer,received_Tlength)
send_data = send_data || receive buffer

end
/gy */
/* Determine whether a confirmation request has been */
/* received. If so, respond with a positive reply. */
[ * e m e e e e e e */

if (status_received = CM_CONFIRM RECEIVED) |,
(status_received = CM_CONFIRM_SEND RECEIVED) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then

do
2y */
/* Issue Confirmed to reply to the partner. */
T S S S Sy Sy S S S S ——— */

'CMCFMD conversation_ID return_code'

say; say 'Routine called: CMCFMD'

if (return_code -= CM_0K) then call ErrorHandler 'CMCFMD'
call TraceParms

end

if (data_received = CM_COMPLETE_DATA_RECEIVED) then
T */
/* Forward data to partner on the other conversation. */
Ty gy Ly, */

call SendInfo
if (status_received = CM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM_SEND RECEIVED) then

[ mm e e e eeeeaeem */
/* The server should only get send control when one */
/* partner has completed sending data. */
gy Ly . */
call PrepReceive
else
if (status_received = CM_CONFIRM DEALLOC_RECEIVED) then
do

say; say 'Conversation deallocated by requester'

call EndConv

end
end
when (CMRCV_return_code = CM DEALLOCATED NORMAL) then
do

call TraceParms 'data_received status_received'
say; say 'Conversation deallocated by requester'

call EndConv

end
otherwise
call ErrorHandler 'CMRCV'
end

end
return
SendInfo:
J e m e e e */
/* Send data received on one conversation to partner on other */

174 z/vM: CPI Communications User’s Guide



VM Extension Calls

/* conversation. The send_data variable contains either the name */
/* of the requested file or a line from the file, and it was set in */

/* ReceiveInfo. Conversation_ID was last set on CMRCV call. */
/* Reset it to the ID of the other conversation. */
[ m e e e e */

if (conversation_ID = save_con_ID1) then
con_ID = save_con_ID2

else
con_ID = save_con_ID1

Lo oA
7 7

buffer = send_data

send_length = Tength(buffer)

'CMSEND con_ID buffer send_Tength',
'request_to_send_received return_code'

say; say 'Routine called: CMSEND'

if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'

call TraceParms 'con_ID'

send_data = "' /* reset received data variable to nulls */
end

return

PrepReceive:
T S */
/* When send control is received on one conversation, the */
/* intermediate server is ready to transfer send control to */
/* partner on the other conversation. */
Ty Sy Sy Sy Sy Ry Sy S RS */

if (conversation_ID = save_con_ID1) then
con_ID = save_con_ID2
else
con_ID = save_con_ID1
'CMPTR con_ID return_code’
say; say 'Routine called: CMPTR'
if (return_code ~= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms 'con_ID'

return

TraceParms:
ey */
/* Display parameters and their values as passed to this subroutine.x/
2y */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_Tength)
when (parameter = 'receive_buffer') then

Chapter 4. VM Extensions to CPl Communications

175



VM Extension Calls

say ' buffer is' lTeft(receive buffer,received length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'send_type') then
say ' send type is' cm_send type.send_type
when (parameter = 'deallocate type') then
say ' deallocate_type is' cm_deallocate_type.deallocate_type
when (parameter = 'conversation_type') then
say ' conversation_type is',
cm_conversation_type.conversation_type
when (parameter = 'resource_manager_type') then
say ' vresource_manager_type is',
XC_resource_manager_type.resource_manager_type
when (parameter = 'service_mode') then
say ' service_mode is' xc_service mode.service_mode
when (parameter = 'security level flag') then
say ' security Tevel flag is',
xc_security level flag.security _level _flag
when (parameter = 'event type') then

say event_type is' xc_event_type.event_type
otherwise
say ' ' parameter 'is' value(parameter)

end
end

/* Commenting out next four lines ...

'CMECS conversation_ID conversation_state return_code'

if (return_code = CM_OK) then

say

conversation_state is =>',
cm_conversation_state.conversation_state

.o/

return

EndConv:

conversation_ID = save_con_ID2

'CMDEAL conversation_ID return_code’

say; say 'Routine called: CMDEAL'
if (return_code -= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms 'conversation_ID'

return

Error:

say
say
say

'+ ERROR: REXX has detected an error'
! The return code variable RC was set to' rc

call AbnormalEnd
signal GetOut

ErrorHandler:

176 z/VM: CPI Communications User’s Guide

*/
*/

*/
*/
*/

*/
*/



VM Extension Calls

gy */
/* Report routine that failed and the error return code. x/
S */
parse arg routine_name

say

say '# ERROR: An error occurred during a' routine_name 'call'

say ' The return_code was set to' cm_return_code.return_code

call AbnormalEnd
signal GetOut

AbnormalEnd:

ey */
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/* Use conversation IDs in save_con_ID1 and save_con_ID2. */
2y */

deallocate_type = CM_DEALLOCATE_ABEND
conversation_ID = save_con_ID1
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms
end
conversation_ID = save_con_ID2
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
end

return

TerminateRes:

Ty */
/* TerminateRes will terminate ownership of the specified resource. */
/* Use resource name stored in save_res_ID at start of program. */
L PRt */

resource_ID = save_res_ID

'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code —= CM_0K) then

do
say
say '* ERROR: An error occurred during an XCTRRM call'
say ' The return_code was set to',
cm_return_code.return_code
end
else

call TraceParms

return
Before we run our programs, we must add location information about the partner

program to the intermediate server’s side information. Otherwise, when SENDBACK
EXEC tries to allocate a conversation to SENDSERV EXEC in the SERVR2 virtual

Chapter 4. VM Extensions to CPI Communications 177



VM Extension Calls

machine, it will get a CM_TPN_NOT_RECOGNIZED return_code. Create a
UCOMDIR FILE on SERVR with the following entry (inserting your user ID, if
different):
:nick.GETFILE :Tuname.*USERID SERVR2
:tpn.GET

After filing the UCOMDIR FILE, remember to issue
set comdir reload

or
set comdir file user ucomdir names

to put the new information into effect.

To test out the intermediate server, just issue

process getfile
from the REQUESTR user ID, with no confirmation processing.

The information displayed at the REQUESTR virtual machine will be identical to
what we have seen in the past. The terminal display is:

178 2z/VM: CPI Communications User’s Guide



VM Extension Calls

process getfile

Requesting the file: TEST FILE A
Routine called: CMINIT
Routine called: XCSCST
Routine called: XCSCSU
Routine called: XCSCSP
Routine called: CMSPLN
Routine called: CMSTPN

Would you Tike confirmation processing? (Y/N)

N

Routine called: CMALLC
Routine called: CMSEND
Routine called: CMSPTR
Routine called: CMPTR

Routine called: CMRCV

data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called:

CMRCV

data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called:

CMRCV

data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND RECEIVED

Routine called:
Ready;

CMDEAL

Figure 59. Results from PROCESS EXEC

At the intermediate server virtual machine SERVR, output from both of its
conversations will be displayed and should look like:

Chapter 4. VM Extensions to CPl Communications

179



VM Extension Calls

Routine called: XCIDRM
Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is
event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP
conversation_ID is 00000000

Routine called: CMECT

Routine called: CMINIT
conversation_ID is 00000001

Routine called: CMALLC
Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED

Routine called: CMPTR
con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000001
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Figure 60. Results from Intermediate Server's SENDBACK EXEC (Part 1 of 2)

180 z/VM: CPI Communications User’s Guide




VM Extension Calls

Routine called: CMSEND
con_ID is 00000000
Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000001
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_SEND_RECEIVED

Routine called: CMSEND
con_ID is 00000000

Routine called: CMPTR
con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by requester

Routine called: CMDEAL
conversation_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.
QUIT

Routine called: XCWOE
conversation_ID is
event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 60. Results from Intermediate Server's SENDBACK EXEC (Part 2 of 2)

The SERVR2 display will be essentially identical to the results we have seen for the
resource manager in the past. The results at the SERVR2 user ID are:

Chapter 4. VM Extensions to CPI Communications 181



VM Extension Calls

Routine called: XCIDRM
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is
event_type is XC_ALLOCATION_REQUEST
Routine called: CMACCP
Routine called: CMECT
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_NO DATA RECEIVED
status_received is CM_SEND_RECEIVED
Routine called: CMSEND
Routine called: CMSST
Routine called: CMSEND
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Routine called: XCTRRM
Ready;

Figure 61. Results from SERV2’s SENDSERV EXEC

182 2z/VM: CPI Communications User’s Guide



VM Extension Calls

Security Considerations for Intermediate Servers

Now that we have modified a server program to act as an intermediate server, let’s
turn our attention back to the topic of security. Before we created the intermediate
server, the requester program was communicating directly with the resource
manager. If the conversation_security_type was either XC_SECURITY_PROGRAM
or the default XC_SECURITY_SAME, the resource manager application was sent
an access security user ID.

An application can use this access security user ID to determine whether the
requester program is authorized to use a particular resource. For example, the
$SERVER$ NAMES file entry for a private resource manager may include an
asterisk on the :1ist. tag, meaning that any application is authorized to connect to
the resource manager. The resource manager, however, may control some
resources, such as restricted files, that only certain users are allowed to access.
When a request is received for one of those resources, the resource manager can
use the Extract_Conversation_Security_User_ID (XCECSU) call to determine if the
requester is authorized to access it.

What happens to the access security user ID when an intermediate server is used?
If the intermediate server is considered to be a TP-model application, then the user
ID of the virtual machine running the requester program will be sent to the resource
manager, as shown in |Fi§ure 62

VMUSR1 VMUSR2 VMUSR3
userid=VMUSR1 userid=VMUSR1
A »| B »| C

Figure 62. Requester’s User ID Is Sent to VMUSR3 with TP-Model Application B’s Allocate

If the intermediate server is not a TP-model application (like in our example
program, because we call Identify_Resource_Manager), the access security user ID
sent to the resource manager is the user ID of the intermediate server, as shown in

VMUSR1 VMUSR2 VMUSR3
userid=VMUSR1 userid=VMUSR2
A »>| B »>| C

Figure 63. Access Security User ID of Intermediate Server (VMUSRZ2) Sent to VMUSR3

If the server controlling the resource needs the access security user ID, the
non-TP-model intermediate server can issue a Set_Client_Security_User_ID
(XCSCUI) call so that the user ID of the requester program’s virtual machine is sent
to the resource manager. That call requires that the intermediate server’s virtual
machine have authorization to issue DIAGNOSE code X'D4'. This is typically Class
B privilege, unless the default privilege classes have been changed.

We will look at Set_Client_Security_User_ID in a moment. First, though, let’s

discuss the call that can provide an intermediate server application with the
requester program’s access security user ID.

Chapter 4. VM Extensions to CPI Communications 183



VM Extension Calls

The Extract_Conversation_Security_User_ID (XCECSU) Call

184

The Extract_Conversation_Security_User_ID (XCECSU) call is used by a program
to extract the access security user ID associated with a given conversation.

A security user ID will be returned only when the conversation_security _type for the
conversation is set to XC_SECURITY_SAME or XC_SECURITY_PROGRAM. The
security_user_ID parameter will contain nulls (X'00') if
Extract_Conversation_Security_User_ID is issued when the

conversation_security _type is XC_SECURITY_NONE.

A call to this routine does not change the conversation security user ID for the
specified conversation.

The format for Extract_Conversation_Security_User_ID is:

CALL XCSCSU(conversation_ID, input
security_user_ID, output
security_user_ID_length, output
return_code) output

Input Parameter
Use the conversation_ID parameter to identify the conversation.

Output Parameters

The security_user_ID parameter is a variable for returning the access security user
ID of the conversation partner. If the return_code is not set to CM_OK, the
security_user_ID will not contain a meaningful value.

The security_user_ID_length parameter returns the length of the security user ID.

Possible values for the return_code parameter are:

CM_OK (0)
indicates that the Extract_Conversation_Security_User_ID (XCECSU) call
executed successfully.

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned.

Results of the Call
When return_code indicates CM_OK the access security user ID associated with
the conversation is returned. This call does not cause a state change.

Adding XCECSU to Our Intermediate Server Program

Let’s add the Extract_Conversation_Security_User_ID call to the intermediate server
as the first step in sending the user program’s user ID (REQUESTR) to the
resource manager (SERVR2). We will include the new call at the end of the
AcceptConv subroutine. Only the security_user_ID will be passed to TraceParms.

The changes to the SENDBACK EXEC on the SERVR user ID are:

Y.
/* SENDBACK EXEC - Sample intermediate server application. */
R L CEEEEny
T T Subroutines -------mmmmmmm o x/

z/NM: CPI Communications User's Guide



VM Extension Calls

AcceptConv:

Ty */
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID1. */
[ m e e e e */

'CMACCP conversation_ID return_code'

save_con_ID1 = conversation_ID

say; say 'Routine called: CMACCP'

if (return_code == CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID'

2y */
/* Extract conversation_type to ensure the conversation is mapped. =/
ey */

'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'

if (return_code == CM_OK) then call ErrorHandler 'CMECT'
call TraceParms

2y */

/* If the conversation is basic, deallocate abnormally. */

g */

if (conversation_type = CM_BASIC_CONVERSATION) then

do
say; say '* ERROR: Accepting and deallocating a basic',
'conversation'

gy */
/* Call Send_Error to notify partner that error was detected. =/
/* Since the program is going to exit, do not check the */
/* Send_Error results for an error. */
2 */

'CMSERR conversation_ID request_to_send_received return_code'
say; say 'Routine called: CMSERR'
if (return_code = CM_0K) then
call TraceParms
call AbnormalEnd
signal GetOut

end
J e mm e e e e */
/* Extract the access security user ID for the conversation. */
O S S S S S Sy S SO S S S Sy */

'XCECSU conversation_ID security_user_ID security_user_ID_length',
'return_code'

say; say 'Routine called: XCECSU'

if (return_code -= CM_OK) then call ErrorHandler 'XCECSU'

call TraceParms 'security_user_ID'

return

StartConv:
Ty */
/* StartConv will establish a conversation with the resource */
/* manager on behalf of the file requester. */
/* First, initialize the conversation to the resource manager. */
L PRt */

sym_dest _name = 'GETFILE'

'CMINIT conversation_ID sym dest_name return_code'
save_con_ID2 = conversation_ID

say; say 'Routine called: CMINIT'

if (return_code -= CM_0OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID'

L PRt */
/* Allocate conversation. Conversation ID still equals save_con_ID2.*/
Ty */

'CMALLC conversation_ID return_code'

say; say 'Routine called: CMALLC'

if (return_code -= CM_0OK) then call ErrorHandler 'CMALLC'
call TraceParms

Chapter 4. VM Extensions to CPI Communications 185



VM Extension Calls

return

Adding XCECSU to Our Resource Manager Program

By adding the Extract_Conversation_Security_User_ID call to the resource manager
as well, we can observe what access security user ID is being sent to it. The
application could use the value returned from that call to determine if the
conversation should be continued for that particular user ID.

Let’s insert the call in the same location, at the end of the AcceptConv subroutine.
The SENDSERV EXEC update for SERVR2 is:

[#=========sz=csssssssssossssosssssssssosssssssssssssssssssosszssssok/
/* SENDSERV EXEC - Sample server application. x/
[¥============s=s=ssssssossmsossssossssossssossssossssssszssssssossow/
[ H e e e e e Subroutines =------mmmmmmm e x/
AcceptConv:

== == —— ... */
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID. */
S */

'CMACCP conversation_ID return_code'

save_con_ID = conversation_ID

say; say 'Routine called: CMACCP'

if (return_code == CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms

2y */
/* Extract conversation_type to ensure the conversation is mapped. */
ey */

'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'

if (return_code == CM_OK) then call ErrorHandler 'CMECT'
call TraceParms

/ey */

/* If the conversation is basic, deallocate abnormally. */

]y */

if (conversation_type = CM_BASIC_CONVERSATION) then

do
say; say '* ERROR: Accepting and deallocating a basic',
'conversation'

gy */
/* Call Send _Error to notify partner that error was detected. =/
/* Since the program is going to exit, do not check the */
/* Send_Error results for an error. */
/2 */

'CMSERR conversation_ID request_to_send_received return_code'
say; say 'Routine called: CMSERR'
if (return_code = CM_0K) then
call TraceParms
call AbnormalEnd
signal GetOut

end
ey Ay gy Sy Sy S S SR */
/* Extract the access security user ID for the conversation. */
J e mm e e e */

'XCECSU conversation_ID security_user_ID security_user_ID length',
'return_code'

say; say 'Routine called: XCECSU'

if (return_code == CM_0K) then call ErrorHandler 'XCECSU'

call TraceParms 'security_user_ID'

186 z/VM: CPI Communications User’s Guide



VM Extension Calls

return

Receivelnfo:

e */
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
gy */

requested length = event_info_length

Again, we will try out the results by entering
process getfile

from the REQUESTR command line, and no confirmation processing will be
requested.

The PROCESS EXEC output on the REQUESTR user ID is unchanged:

process getfile

Requesting the file: TEST FILE A
Routine called: CMINIT
Routine called: XCSCST
Routine called: XCSCSU
Routine called: XCSCSP
Routine called: CMSPLN
Routine called: CMSTPN

Would you Tike confirmation processing? (Y/N)

N

Routine called: CMALLC
Routine called: CMSEND
Routine called: CMSPTR
Routine called: CMPTR

Routine called: CMRCV

data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called:

CMRCV

data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called:

CMRCV

data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND _RECEIVED

Routine called:
Ready;

CMDEAL

Figure 64. Results from Requester's PROCESS EXEC

Chapter 4. VM Extensions to CPI Communications

187



VM Extension Calls

188

On the SERVR virtual machine, the intermediate server results are:

Routine called: XCIDRM
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE

conversation_ID is

event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP
conversation_ID is 00000000

Routine called: CMECT

Routine called: XCECSU
security_user_ID is REQUESTR

Routine called: CMINIT
conversation_ID is 00000001

Routine called: CMALLC
Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED

Routine called: CMPTR
con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE

conversation_ID is 00000001
event_type is XC_INFORMATION_INPUT

Figure 65. Results from Intermediate Server's SENDBACK EXEC (Part 1 of 2)

z/NM: CPI Communications User's Guide



VM Extension Calls

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000001
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_SEND _RECEIVED

Routine called: CMSEND
con_ID is 00000000

Routine called: CMPTR
con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION INPUT

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by requester

Routine called: CMDEAL
conversation_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.
QUIT

Routine called: XCWOE
conversation_ID is
event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 65. Results from Intermediate Server's SENDBACK EXEC (Part 2 of 2)

Lastly, displayed at the SERVR2 user ID is:

Chapter 4. VM Extensions to CPl Communications

189



VM Extension Calls

190

Routine called: XCIDRM
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is
event_type is XC_ALLOCATION_REQUEST
Routine called: CMACCP
Routine called: CMECT

Routine called: XCECSU
security_user_ID is SERVR

Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event _type is XC_INFORMATION_ INPUT
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED
Routine called: CMSEND
Routine called: CMSST
Routine called: CMSEND
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_NO DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Routine called: XCTRRM
Ready;

Figure 66. Results from SERVR2's SENDSERV EXEC

Notice that the access security user ID extracted by the SERVR’s SENDBACK
EXEC is REQUESTR, and the value extracted by the SERVR2’s SENDSERV
EXEC is SERVR. Thus, SENDSERYV has no way of knowing that the request
originated from the REQUESTR virtual machine.

z/NM: CPI Communications User's Guide



VM Extension Calls

Because the intermediate server is simply passing a request for data along to the
resource manager, it may be desirable to let the resource manager know the value
of the access security user ID used for the initial conversation from the file
requester to the intermediate server. The next routine provides a way to forward an
access security user ID, provided the virtual machine has the required privilege
class.

The Set_Client_Security_User_ID (XCSCUI) Call

The Set_Client_Security_User_ID (XCSCUI) call is used by an intermediate server
to set an access security user ID value for a given conversation based on an
incoming conversation’s access security user ID. This user ID is then presented to
the target when the intermediate server allocates a conversation on behalf of the
client application (the requester program).

An intermediate server may have incoming conversations from various virtual
machines. Set_Client_Security_User_ID (XCSCUI) can be used to specify a
particular user ID that will be presented to the target resource manager. In this way,
the target resource manager virtual machine knows the origin of the request.

An intermediate server can call Set_Client_Security_User_ID (XCSCUI) only when

the following conditions are true:

* The program is not a TP-model application.

* The specified conversation (to be allocated to the target resource manager) has
a conversation_security_type characteristic equal to XC_SECURITY_SAME.

* An access security user ID is available for the incoming conversation with the
client. The access security user ID for that conversation should be retrieved by
calling the Extract_Conversation_Security_User_ID (XCECSU) routine.

* The intermediate server virtual machine is authorized to issue a DIAGNOSE
code X'D4' (for defining an alternate user ID). This authorization typically requires
privilege class B, unless the default privilege classes have been altered. If not
authorized, the Allocate (CMALLC) call will complete with a
CM_PRODUCT_SPECIFIC_ERROR return code.

This call can be issued only when the specified conversation is in Initialize state,
prior to the Allocate call.

The format for Set_Client_Security_User_ID is:

CALL XCSCUl(conversation_ID, input
client_user_ID, input
return_code) output

Input Parameters
There are two input parameters. Specify the identifier for the outgoing conversation
in the conversation_ID parameter.

Use the client_user ID parameter to specify the user ID that was obtained using
Extract_Conversation_Security_User_ID.

Output Parameter

Possible values for the return_code parameter are:
CM_OK (0)
indicates that Set_Client_Security_User_ID executed successfully.

Chapter 4. VM Extensions to CPI Communications 191



VM Extension Calls

CM_PROGRAM_PARAMETER_CHECK (24)
indicates that the specified conversation ID is unassigned or that the
conversation_security_type of the outgoing conversation is not
XC_SECURITY_SAME.

CM_PROGRAM_STATE_CHECK (25)
indicates that the conversation in not in Initialize state or that the program
is a TP-model application, which makes this call invalid.

Results of the Call
Upon successful completion, the security_user_ID for the specified conversation is
set to the value specified on the call. This call does not cause a state change.

If the intermediate server virtual machine is not authorized to issue DIAGNOSE
code X'D4', an allocation error results.

Adding XCSCUI to Our Intermediate Server Program

Providing your intermediate server virtual machine is authorized to issue
DIAGNOSE code X'D4', you can add the Set_Client_Security_User_ID call to the
intermediate server application. By adding that call, we can have the access
security user ID associated with the requester’'s conversation sent to the resource
manager. Only the client_user_ID will be passed for TraceParms to display.

We will add the call in the StartConv subroutine, just after the
Initialize_Conversation (CMINIT) call. The SERVR file SENDBACK EXEC is
updated, as follows:

[#===============s=s=sssssssssssssssssosssosssssssssssssssssssosososkf
/* SENDBACK EXEC - Sample intermediate server application. */
/*:::===============================================================*/
StartConv:

/Ty */
/* StartConv will establish a conversation with the resource */
/* manager on behalf of the file requester. */
/* First, initialize the conversation to the resource manager. */
e */

sym_dest_name = 'GETFILE'

'CMINIT conversation_ID sym dest name return_code'
save_con_ID2 = conversation_ID

say; say 'Routine called: CMINIT'

if (return_code -= CM_0K) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID'

[ m e e e e */
/* Pass the requesting program's access user ID to resource manager.*/
P */

client_user_ID = security_user_ID

'XCSCUI conversation_ID client_user_ID return_code'

say; say 'Routine called: XCSCUI'

if (return_code ~= CM_OK) then call ErrorHandler 'XCSCUI'
call TraceParms 'client_user_ID'

2y */
/* Allocate conversation. Conversation ID still equals save con_ID2.*/
e */

'CMALLC conversation_ID return_code'

say; say 'Routine called: CMALLC'

if (return_code == CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms

return

192 2z/VM: CPI Communications User’s Guide



VM Extension Calls

After entering
process getfile

at the REQUESTR user ID, we will rather quickly encounter a problem. At the
resource manager’s virtual machine, SERVR2, a familiar error message appears
(with the corresponding time):

hh:mm:ss * MSG FROM SERVR2 : DMSIUH2027E Connection request on path 0
is severed for reason =7

Figure 67. Results at SERVR2’s Console

— FYI: If SERVR Received a Product-Specific Error Instead
If the following message was appended to the CPICOMM LOGDATA file on
the SERVR user ID (intermediate server):

CMALLC_PRODUCT_SPECIFIC_ERROR: Unable to set alternate user ID

the VM system you are working on may have an external security manager
program such as Resource Access Control Facility/Virtual Machine
(RACF*/VM) installed. Such a program may require a special command to be
entered before it will allow an alternate user ID to be set. You will need to
check the documentation for that external security manager to determine how
to obtain the necessary authority for the intermediate server.

This sever message indicates that some validation attempt has failed and suggests
that there may be a missing entry in the $SERVER$ NAMES file. Apparently, the
Set_Client_Security_User_ID call really did make it appear to the resource manager
that the file request was coming directly from the REQUESTR user ID. However,
only the intermediate server, SERVR, is authorized in the $SERVER$ NAMES file
to connect to the resource manager SENDSERV EXEC, so the conversation was
deallocated.

A quick update to the $SSERVER$ NAMES file on the SERVR2 virtual machine will
clear up this problem. Let’s simply add REQUESTR to the list of authorized users of
the resource manager:
:nick.GET :1ist.SERVR REQUESTR
:module.SENDSERV

Starting our programs again will yield these results at the REQUESTR terminal:

Chapter 4. VM Extensions to CPI Communications 193



VM Extension Calls

process getfile
Requesting the file: TEST FILE A

Routine called: CMINIT
Routine called: XCSCST
Routine called: XCSCSU
Routine called: XCSCSP
Routine called: CMSPLN
Routine called: CMSTPN

Would you Tike confirmation processing? (Y/N)
N

Routine called: CMALLC
Routine called: CMSEND
Routine called: CMSPTR
Routine called: CMPTR
Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND RECEIVED

Routine called: CMDEAL
Ready;

Figure 68. Results from Requester's PROCESS EXEC

The SENDBACK EXEC on the SERVR virtual machine displays the following
output:

194 z/vM: CPI Communications User’s Guide



VM Extension Calls

Routine called: XCIDRM
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE

conversation_ID is

event_type is XC_ALLOCATION_REQUEST

Routine called: CMACCP
conversation_ID is 00000000

Routine called: CMECT

Routine called: XCECSU
security_user_ID is REQUESTR

Routine called: CMINIT
conversation_ID is 00000001

Routine called: XCSCUI
client_user ID is REQUESTR

Routine called: CMALLC
Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Routine called: CMSEND
con_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED

Routine called: CMPTR
con_ID is 00000001

Figure 69. Results from Server's SENDBACK EXEC (Part 1 of 2)

Chapter 4. VM Extensions to CPI Communications 195



VM Extension Calls

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000001
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_COMPLETE_DATA_RECEIVED
status_received is CM_NO_STATUS RECEIVED

Routine called: CMSEND
con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000001
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_SEND_RECEIVED

Routine called: CMSEND
con_ID is 00000000

Routine called: CMPTR
con_ID is 00000000

Waiting for an event to occur. Enter "QUIT" to exit.

Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT

Routine called: CMRCV
data_received is CM_NO DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by requester

Routine called: CMDEAL
conversation_ID is 00000001

Waiting for an event to occur. Enter "QUIT" to exit.
QUIT

Routine called: XCWOE
conversation_ID is
event_type is XC_CONSOLE_INPUT

Routine called: XCTRRM
Ready;

Figure 69. Results from Server's SENDBACK EXEC (Part 2 of 2)

And, final results from the resource manager virtual machine, SERVR2, are:

196 z/VM: CPI Communications User’s Guide



VM Extension Calls

Routine called: XCIDRM
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is
event_type is XC_ALLOCATION_REQUEST
Routine called: CMACCP
Routine called: CMECT

Routine called: XCECSU
security_user_ID is REQUESTR

Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_COMPLETE_DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event _type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_NO_DATA_RECEIVED
status_received is CM_SEND_RECEIVED
Routine called: CMSEND
Routine called: CMSST
Routine called: CMSEND
Waiting for an event to occur. Enter "QUIT" to exit.
Routine called: XCWOE
conversation_ID is 00000000
event_type is XC_INFORMATION_INPUT
Routine called: CMRCV
data_received is CM_NO DATA RECEIVED
status_received is CM_NO_STATUS_RECEIVED

Conversation deallocated by partner

Routine called: XCTRRM
Ready;

Figure 70. Results from SERVR2’s SENDSERV EXEC

Now the LU where SENDSERYV resides is able to validate the original requester
against the entries in the SERVR2 user ID’'s $SERVER$ NAMES file to ensure that
only authorized users are allowed to access the resources controlled by
SENDSERV.

Chapter 4. VM Extensions to CPI Communications 197



VM Extension Calls

Overview of Additional VM Extension Calls

None of the routines covered in this section are used in any of our sample
programs. They are included here to give you a brief introduction to the other
extension routines available to programmers in the VM environment.

Extract_Conversation_LUWID (XCECL) Call

The Extract_Conversation_LUWID (XCECL) call extracts the logical unit of work ID
(LUWID) associated with the specified protected conversation. The LUWID can be
used to identify the most recent synchronization point. This routine can be called
only after an Allocate (CMALLC) or Accept_Conversation (CMACCP) call that
establishes a protected (sync_level value of CM_SYNC_POINT) conversation.

Extract_Conversation_Workunitid (XCECWU) Call

The Extract_Conversation_Workunitid (XCECWU) call extracts the CMS work unit
ID associated with the specified conversation. Extract_Conversation_Workunitid is
especially useful for resource managers that handle multiple requests for multiple
resources.

The output from this routine can be used as input to specify the work unit ID on
such CSL routines as Push Workunitid (DMSPUSH), for changing the default CMS
work unit, and Commit (DMSCOMM) and Rollback (DMSROLLB) when using
Coordinated Resource Recovery. These callable services library (CSL) routines are
described in the|z/VM: CMS Callable Services Referencel For information on CMS
work units, refer to the |zZVM: CMS Application Development Guide}

Extract_Local_Fully_Qualified_LU_Name (XCELFQ) Call

The Extract_Local_Fully_Qualified_LU_Name (XCELFQ) call extracts the local
fully-qualified LU name for the specified conversation. The output from this routine
can be used as input on the Resource Adapter Registration (DMSREG) CSL
routine, which is described in the|z/VM: CMS Callable Services Referencel

Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) Call

The Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) call extracts the remote
fully-qualified LU name for the specified conversation. The output from this routine
can be used as input on the Resource Adapter Registration (DMSREG) CSL
routine, which is described in the|z/VM: CMS Callable Services Referencel

Extract_TP_Name (XCETPN) Call

The Extract_TP_Name (XCETPN) call extracts the TP name characteristic for the
specified conversation.

Signal_User_Event (XCSUE) Call

The Signal_User_Event (XCSUE) call queues an event to be reported by a
subsequent Wait_on_Event call in the same virtual machine. Signal_User_Event
would typically be called from an event handler to let a CPI Communications
program running in the same virtual machine know about some event such as the
receipt of a message or the lapsing of a time interval. The CPI Communications
program would have to issue Wait_on_Event (XCWOE) to get the user-event
notification.

198 2z//M: CPI Communications User’s Guide



VM Extension Calls

The Completed Sample Execs

Listings of the three completed programs are provided in this section. All of the
changes made during this chapter are incorporated into these final versions.

The PROCESS Sample File Requester Exec

/*::================================================================*/
/* PROCESS EXEC - Sample file requester application. */
/*::================================================================*/
arg sym_dest_name fname ftype fmode /* get user's input */
L PRt */
/* If a file was not specifically requested, set up a default. */
ey */
if (fname = '') then
do
fname = 'TEST'
ftype = 'FILE'
fmode = 'A'
end
say 'Requesting the file: ' fname ftype fmode
Ty S Sy S S Sy Sy S S Sy S Sy Sy Sy S S */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
g */

address cpicomm
signal on error

2y */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
[ o m e e e e e e */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

Ty Sy S S Sy Sy S S Sy S Sy Sy Sy S S —— */
/* Initialize the conversation. */
L PR */

'CMINIT conversation_ID sym dest name return_code'

say; say 'Routine called: CMINIT'

if (return_code -= CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms

[ e m e e e e e e */
/* Set the conversation_security type explicitly. */
L PRt */

conversation_security_type = XC_SECURITY_PROGRAM

'XCSCST conversation_ID conversation_security_type return_code'
say; say 'Routine called: XCSCST'

if (return_code -= CM_OK) then call ErrorHandler 'XCSCST'

call TraceParms

ey */
/* Set the security_user_ID explicitly. */
e */

security_user_ID = 'REQUESTR'

security user ID length = Tength(security user_ ID)

'XCSCSU conversation_ID security_user_ID security_user_ID_length',
'return_code'

say; say 'Routine called: XCSCSU'

if (return_code == CM_OK) then call ErrorHandler 'XCSCSU'

call TraceParms

g */
/* Set the security password explicitly. */
2y */

security_password = 'PASSWORD'
security password_length = Tength(security_password)

Chapter 4. VM Extensions to CPI Communications 199



VM Extension Calls

200

'XCSCSP conversation_ID security password security password_length',
'return_code'

say; say 'Routine called: XCSCSP'

if (return_code -= CM_0K) then call ErrorHandler 'XCSCSP'

call TraceParms

e */
/* Set the partner_LU_name explicitly. */
S */

partner_LU_name = '+USERID SERVR'

partner LU name_length = Tength(partner LU name)

'CMSPLN conversation_ID partner_LU name',
'partner_LU_name_Tength return_code'

say; say 'Routine called: CMSPLN'

if (return_code == CM_OK) then call ErrorHandler 'CMSPLN'

call TraceParms

ey */
/* Set the transaction program name (TP_name) explicitly. */
ey */

TP_name = 'GET'

TP_name_length = Tength(TP_name)

'CMSTPN conversation_ID TP_name TP_name_length return_code’
say; say 'Routine called: CMSTPN'

if (return_code —= CM_0K) then call ErrorHandler 'CMSTPN'
call TraceParms

2y */
/* Determine if confirmation processing is desired. */
g */

say; say 'Would you like confirmation processing? (Y/N)'
parse upper pull perform_confirm
if (perform_confirm = 'Y') then

do
2y */
/* Set sync_level to CM_CONFIRM. */
2 */

sync_level = CM_CONFIRM

'CMSSL conversation_ID sync_level return_code'

say; say 'Routine called: CMSSL'

if (return_code -= CM_OK) then call ErrorHandler 'CMSSL'
call TraceParms

say ' Confirmation processing enabled'

end
2y */
/% Allocate the conversation. x/
ey */

'CMALLC conversation_ID return_code'

say; say 'Routine called: CMALLC'

if (return_code == CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms

2y */
/* Send the name of the file being requested to the partner program.*/
2y */

buffer = fname ftype fmode

send_length = Tength(buffer)

'CMSEND conversation_ID buffer send_length',
'request_to_send_received return_code'

say; say 'Routine called: CMSEND'

if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'

call TraceParms

[ m e e */
/* Call Confirm only when sync_level is not CM_NONE. We can use */
/* the confirmation processing flag set from console input. x/
2 */
if (perform_confirm = 'Y') then
do
gy */
/* Confirm that partner has started and received the name of */
/* the requested file. */

z/NM: CPI Communications User's Guide



VM Extension Calls

'CMCFM conversation_ID request_to_send_received',
'return_code'

say; say 'Routine called: CMCFM'

if (return_code -= CM_0K) then call ErrorHandler 'CMCFM'

call TraceParms

end
g */
/* Set the prepare_to_receive_type to CM_PREP_TO_RECEIVE_FLUSH. */
e */

prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH

'CMSPTR conversation_ID prepare_to_receive_type return_code'
say; say 'Routine called: CMSPTR'

if (return_code == CM_OK) then call ErrorHandler 'CMSPTR'
call TraceParms

ey */
/* Issue Prepare_To Receive to switch the conversation state from =*/
/* Send state to Receive state. */
S S S S S S Sy U S S IS S */

'"CMPTR conversation_ID return_code'

say; say 'Routine called: CMPTR'

if (return_code -= CM_0K) then call ErrorHandler 'CMPTR'
call TraceParms

Ty Sy S S Sy Sy S Sy Sy S Sy Sy Sy S S S —— */
/* Start a Receive Toop. Receive calls will be issued until */
/* notification that the partner has finished sending data and */
/* entered Receive state at its end of the conversation (noted by */
/* receipt of CM_SEND_RECEIVED or CM_CONFIRM_SEND RECEIVED */
/* for status_received) or until a return_code value other than */
/* CM_OK is returned. The record lTength of the incoming data */
/* is assumed to be 80 bytes, or less. */
e */

complete_line = "'

requested_Tength = 80

do until (status_received = CM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM _SEND RECEIVED)

] */
/* Receive information from the conversation partner. */
[ K mmm e e e e e */

'CMRCV conversation_ID receive_buffer requested_Tength',
'data_received received_length status_received',
'request_to_send_received return_code'

say; say 'Routine called: CMRCV'

select

when (return_code = CM_OK) then
do
call TraceParms 'data_received status_received'
if (data_received —-= CM_NO_DATA _RECEIVED) then
do
receive_buffer = left(receive buffer,received Tength)
complete line = complete line || receive_buffer

end
if (data_received = CM_COMPLETE_DATA RECEIVED) then
do
K m e e e e */
/* Use EXECIO to write the data to OUTPUT LOGFILE A */
/* and reset the complete_line variable to nulls. */
/2 */

address command 'EXECIO 1 DISKW OUTPUT LOGFILE A (FINIS',
'STRING' complete_Tine
complete_line = "'

end
2y */
/* Determine whether a confirmation request has been */
/* received. If so, respond with a positive reply. */
e m e e e e */

if (status_received = CM_CONFIRM RECEIVED) |,

Chapter 4. VM Extensions to CPI Communications 201



VM Extension Calls

202

(status_received = CM_CONFIRM_SEND RECEIVED) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then

do
2y */
/* Issue Confirmed to reply to the partner. */
g */

'CMCFMD conversation_ID return_code'

say; say 'Routine called: CMCFMD'

if (return_code == CM_OK) then call ErrorHandler 'CMCFMD'
call TraceParms

end
end
otherwise
call ErrorHandler 'CMRCV'
end
end
S S Sy S S Sy S SRS Sy PSS S S Sy S —— */
/* Deallocate the conversation normally. */
[ e m e e */

'CMDEAL conversation_ID return_code'

say; say 'Routine called: CMDEAL'

if (return_code -= CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms

GetOut:
exit

S S S Sy S S Sy S Sy S Sy USSR S —— */
/* Display parameters and their values as passed to this subroutine.*/
[ m e e */

parse arg parmlist
do word num = 1 to words(parmlist)
parameter = word(parmlist,word _num)
select

when (parameter = 'return_code') then

say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then

say ' buffer is' Teft(buffer,send_Tlength)
when (parameter = 'receive_buffer') then

say ' buffer is' lTeft(receive buffer,received length)
when (parameter = 'data_received') then

say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then

say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send received') then

say ' request_to_send_received is',

cm_request_to_send received.request _to_send received

when (parameter = 'sync_level') then

say ' sync_level is' cm_sync_level.sync_level
when (parameter = 'prepare_to_receive_type') then

say ' prepare_to_receive_type is',

cm_prepare_to_receive_type.prepare_to_receive_type

when (parameter = 'deallocate_type') then

say ' deallocate_type is' cm deallocate_type.deallocate_type
when (parameter = 'conversation_security type') then

say conversation_security_type is',
xc_conversation_security_type.conversation_security_type
otherwise
say ' ' parameter 'is' value(parameter)
end

end
2y */
/* Extract the current conversation state of the local program. */
ey */

z/NM: CPI Communications User's Guide



VM Extension Calls

/* Commenting out next four Tines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then
say ' conversation_state is =>',
cm_conversation_state.conversation_state

Y
return
Error:
[ m e e e e e */
/* Report error when REXX special variable RC is not 0. */
L PRt */
say

say '* ERROR: REXX has detected an error'

say ' The return code variable RC was set to' rc
call AbnormalEnd

signal GetOut

ErrorHandler:

ey */
/* Report routine that failed and the error return code. */
2y */
parse arg routine_name

say

say '# ERROR: An error occurred during a' routine_name 'call'

say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd

signal GetOut

AbnormalEnd:

g */
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
[ m e e e e e e */

deallocate_type = CM_DEALLOCATE_ABEND
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms

end

return
The SENDBACK Sample Intermediate Server Exec

[¥================c=s=s=s=omsomsoosocssossossossoooooooossosoozsozooooyf
/* SENDBACK EXEC - Sample intermediate server application. */
/*:::===============================================================*/
arg resource_ID /* :nick. value from $SERVER$ NAMES file =*/
[ e m e e e e e */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
gy */

address cpicomm
signal on error

Ty */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */

Chapter 4. VM Extensions to CPI Communications 203



VM Extension Calls

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'

do
en

/*
/*
/*

re
sa
re
se
se
'X

index = 1 to pseudonym.0

interpret pseudonym.index

d
Identify the application as manager of the private resource.
Remember the resource ID value for Tater use in XCTRRM by
storing it in save_res_ID.

source_ID = word(resource_ID 'GET',1)

ve_res_ID = resource_ID

source_manager_type = XC_PRIVATE

rvice_mode = XC_SEQUENTIAL

curity_level_flag = XC_REJECT_SECURITY_NONE

CIDRM resource_ID resource_manager_type service_mode',

'security_level flag return_code'

say; say 'Routine called: XCIDRM'

if

ca

/*
/*

se
do

(return_code == CM_OK) then
do
say
say '* ERROR: An error occurred during an XCIDRM call'
say ' The return_code was set to',

cm_return_code.return_code
signal GetOut
end

11 TraceParms

Start continuous Wait_on_Event loop.
Any console input will end the Toop.
nd_data = '!

forever

say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'

'XCWOE resource_ID conversation_ID event type event info length',
'event_buffer return_code'

say; say 'Routine called: XCWOE'

if (return_code -= CM_OK) then call ErrorHandler 'XCWOE'

call TraceParms 'conversation_ID event_type'

[F e e e e mmcmmme e e m e —————
/* Choose next action based on type of event.
o e e e e es
select
when (event_type = XC_ALLOCATION_REQUEST) then
do

call AcceptConv
call StartConv
end
when (event_type = XC_INFORMATION_INPUT) then
call Receivelnfo
when (event_type = XC_CONSOLE_INPUT) then

leave
otherwise

do
say
say 'x ERROR: Wait_on_Event reported event_ type',

xc_event_type.event_type
end
end /* select */

/* When notice of partner's deallocation is received, leave the

204 z/vM: CPI Communications Users Guide

*/
*/
*/

*/



VM Extension Calls

/* Wait_on_Event loop. */
] */
/* Commenting out next three Tines ...
if (return_code = CM_DEALLOCATED_NORMAL) |,

(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then

leave

el */
end /* do forever */
GetOut:

call TerminateRes

exit
T e LR Subroutines ---=------mmmmmee */
AcceptConv:
Ty Sy S Sy Sy U Sy S Sy Sy S S S S —— */
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_IDI. */
g */

'CMACCP conversation_ID return_code'

save_con_ID1 = conversation_ID

say; say 'Routine called: CMACCP'

if (return_code -= CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms 'conversation_ID'

[ e m e e e e e */
/* Extract conversation_type to ensure the conversation is mapped. */
L PRt */

'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'

if (return_code -= CM_OK) then call ErrorHandler 'CMECT'
call TraceParms

[ e m e e e e e e */

/% 1f the conversation is basic, deallocate abnormally. */

e */

if (conversation type = CM_BASIC_CONVERSATION) then

do
say; say '* ERROR: Accepting and deallocating a basic',
'conversation'

L P */
/* Call Send_Error to notify partner that error was detected. */
/* Since the program is going to exit, do not check the x/
/* Send_Error results for an error. */
gy */

'CMSERR conversation_ID request_to_send_received return_code'
say; say 'Routine called: CMSERR'
if (return_code = CM_OK) then
call TraceParms
call AbnormalEnd
signal GetOut

end
S S S S S S Sy USSRy */
/* Extract the access security user ID for the conversation. */
L PRt */

'XCECSU conversation_ID security user ID security user_ID Tength',
'return_code'

say; say 'Routine called: XCECSU'

if (return_code -= CM_0K) then call ErrorHandler 'XCECSU'

call TraceParms 'security_user ID'

return

StartConv:
gy */
/* StartConv will establish a conversation with the resource */
/* manager on behalf of the file requester. */

Chapter 4. VM Extensions to CPI Communications 205



VM Extension Calls

206

/* First, initialize the conversation to the resource manager. x/

sym_dest name = 'GETFILE'

'CMINIT conversation_ID sym_dest_name return_code'
save_con_ID2 = conversation_ID

say; say 'Routine called: CMINIT'

if (return_code == CM_OK) then call ErrorHandler 'CMINIT'
call TraceParms 'conversation_ID'

ey */
/* Pass the requesting program's access user ID to resource manager.*/
2y */

client_user_ID = security_user_ID

'XCSCUI conversation_ID client_user_ID return_code'

say; say 'Routine called: XCSCUI'

if (return_code -= CM_0K) then call ErrorHandler 'XCSCUI'
call TraceParms 'client_user_ID'

T Sy S Sy S Sy Sy USSRy S Sy S */
/* Allocate conversation. Conversation_ID still equals save_con_ID2.*/
[ m e e */

'CMALLC conversation_ID return_code'

say; say 'Routine called: CMALLC'

if (return_code -= CM_OK) then call ErrorHandler 'CMALLC'
call TraceParms

return

Receivelnfo:
S */
/* Start a Receive loop. */
/* Receive data, status, or both from conversation partner. */
e */

requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA RECEIVED) |,
(data_received = CM_NO_DATA_RECEIVED)

'"CMRCV conversation_ID receive buffer requested length',
'data_received received_length status_received',
'request_to _send received return_code'

CMRCV_return_code = return_code

say; say 'Routine called: CMRCV'

select

when (CMRCV_return_code = CM_OK) then
do
call TraceParms 'data_received status_received'
if (data_received == CM_NO_DATA RECEIVED) then
do
receive_buffer = left(receive_buffer,received length)
send_data = send data || receive buffer

end
e */
/* Determine whether a confirmation request has been */
/* received. If so, respond with a positive reply. */
2 */

if (status_received = CM_CONFIRM_RECEIVED) |,
(status_received = CM_CONFIRM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM_DEALLOC_RECEIVED) then

do
2y */
/* Issue Confirmed to reply to the partner. */
g */

'CMCFMD conversation_ID return_code'
say; say 'Routine called: CMCFMD'
if (return_code -= CM_OK) then call ErrorHandler 'CMCFMD'
call TraceParms
end
if (data_received = CM_COMPLETE_DATA RECEIVED) then

z/NM: CPI Communications User's Guide



VM Extension Calls

/* Forward data to partner on the other conversation. */

call SendInfo
if (status_received = CM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM_SEND RECEIVED) then

K m m e e - */
/* The server should only get send control when one */
/* partner has completed sending data. */
/2y */
call PrepReceive
else
if (status_received = CM_CONFIRM_DEALLOC_RECEIVED) then
do

say; say 'Conversation deallocated by requester'
call EndConv

end
end
when (CMRCV_return_code = CM_DEALLOCATED_NORMAL) then
do

call TraceParms 'data_received status_received'
say; say 'Conversation deallocated by requester'
call EndConv

end
otherwise
call ErrorHandler 'CMRCV'
end

end
return
SendInfo:
[ e m e e e e e */
/* Send data received on one conversation to partner on other */

/* conversation. The send_data variable contains either the name  */
/* of the requested file or a line from the file, and it was set in */

/* ReceivelInfo. Conversation_ID was last set on CMRCV call. */
/* Reset it to the ID of the other conversation. */
e */

if (conversation_ID = save_con_ID1) then
con_ID = save_con_ID2
else
con_ID = save_con_ID1
buffer = send_data
send_Tlength = length(buffer)
'CMSEND con_ID buffer send_Tength',
'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code == CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms 'con_ID'
send_data = "' /* reset received data variable to nulls =/

return

PrepReceive:

e */
/* When send control is received on one conversation, the */
/* intermediate server is ready to transfer send control to */
/* partner on the other conversation. */
L PRt */

if (conversation ID = save_con_ID1) then
con_ID = save_con_ID2

else
con_ID = save_con_ID1

'CMPTR con_ID return_code'

say; say 'Routine called: CMPTR'

Chapter 4. VM Extensions to CPl Communications

207



VM Extension Calls

if (return_code -= CM_OK) then call ErrorHandler 'CMPTR'
call TraceParms 'con_ID'

return

TraceParms:

parse arg parmlist
do word _num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm_return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' lTeft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' lTeft(receive buffer,received_length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status_received') then
say '
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',
cm_request_to_send_received.request_to_send_received
when (parameter = 'send_type') then
say ' send_type is' cm_send_type.send_type
when (parameter = 'deallocate_type') then
say '
when (parameter = 'conversation_type') then
say ' conversation_type is',
cm_conversation_type.conversation_type
when (parameter = 'resource_manager_type') then
say ' vresource_manager type is',
XC_resource_manager_type.resource_manager_type
when (parameter = 'service mode') then
say ' service_mode is' xc_service_mode.service_mode
when (parameter = 'security level flag') then
say ' security Tevel flag is',
xc_security Tevel flag.security_ Tevel flag
when (parameter = 'event type') then

say event_type is' xc_event_type.event_type
otherwise
say ' ' parameter 'is' value(parameter)
end
end

/* Commenting out next four lines ...
'CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation_state is =>',
cm_conversation_state.conversation_state
.o/
return
EndConv:

conversation_ID = save_con_ID2
'CMDEAL conversation_ID return_code'

z/NM: CPI Communications User's Guide

status_received is' cm_status_received.status_received

deallocate type is' cm deallocate type.deallocate type

*/



VM Extension Calls

say; say 'Routine called: CMDEAL'
if (return_code == CM_OK) then call ErrorHandler 'CMDEAL'
call TraceParms 'conversation_ID'

return

Error:
gy */
/* Report error when REXX special variable RC is not 0. */
2y */
say

say '* ERROR: REXX has detected an error'

say ' The return code variable RC was set to' rc

call AbnormalEnd
signal GetOut

ErrorHandler:

g */
/* Report routine that failed and the error return code. */
S */
parse arg routine_name

say

say 'x ERROR: An error occurred during a' routine_name 'call'

say ' The return_code was set to' cm_return_code.return_code
call AbnormalEnd

signal GetOut

AbnormalEnd:

e */
/* Abnormally deallocate the conversation. Since we are exiting */
/* due to an error, we will not display an error message if the */
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/* Use conversation IDs in save_con_ID1 and save con_ID2. */
Ty */

deallocate type = CM_DEALLOCATE_ABEND
conversation_ID = save_con_ID
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms
end
conversation_ID = save_con_ID2
'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'

end
return
TerminateRes:
ey */
/* TerminateRes will terminate ownership of the specified resource. */
/* Use resource name stored in save_res_ID at start of program. */
S S S S S S Sy U S S S IS S */

resource_ID = save_res_ID

Chapter 4. VM Extensions to CPl Communications

209



VM Extension Calls

'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code -= CM_OK) then

do
say
say '* ERROR: An error occurred during an XCTRRM call'
say ' The return_code was set to',
cm_return_code.return_code
end
else

call TraceParms

return

The SENDSERV Sample Resource Manager Exec

/*:::===============================================================*/
/* SENDSERV EXEC - Sample server application. */
/*:::===============================================================*/
arg resource_ID /* :nick. value from $SERVER$ NAMES file =*/
[ m e e */
/* Set up REXX environment for program-to-program communications */
/* and enable error trapping of REXX errors. */
S */

address cpicomm
signal on error

e */
/* Equate pseudonyms to their integer values based on the */
/* definitions contained in the CMREXX COPY file. */
Ty */

address command 'EXECIO * DISKR CMREXX COPY * (FINIS STEM PSEUDONYM.'
do index = 1 to pseudonym.0
interpret pseudonym.index

end

== == - —— .- */
/* Identify the application as manager of the private resource. */
/* Remember the resource_ID value for later use in XCTRRM by */
/* storing it in save res_ID. */
2y */

resource_ID = word(resource ID 'GET',1)
save_res_ID = resource_ID
resource_manager_type = XC_PRIVATE
service_mode = XC_SEQUENTIAL
security_level_flag = XC_REJECT_SECURITY_NONE
'XCIDRM resource_ID resource_manager_type service mode',
'security_level_flag return_code'
say; say 'Routine called: XCIDRM'
if (return_code -= CM_OK) then
do
say
say '* ERROR: An error occurred during an XCIDRM call'
say ' The return_code was set to',
cm_return_code.return_code
signal GetOut

end
call TraceParms
2 */
/* Start continuous Wait_on_Event Toop. */
/* Any console input will end the Toop. */
ey */
requested_file = "'
do forever
say; say 'Waiting for an event to occur. Enter "QUIT" to exit.'
2y */
/* Issue Wait_on_Event to wait for the next event to occur. */
S Sy S U S S Sy S S Sy S S S S S ——— */

210 z/vM: CPI Communications Users Guide



VM Extension Calls

'XCWOE resource_ID conversation_ID event_type event_info_length',
'event_buffer return_code'

say; say 'Routine called: XCWOE'

if (return_code -= CM_OK) then call ErrorHandler 'XCWOE'

call TraceParms

/K m e m e e e e e */
/* Choose next action based on type of event. */
2y */
select

when (event type = XC_ALLOCATION_ REQUEST) then
call AcceptConv

when (event_type = XC_INFORMATION_INPUT) then
call Receivelnfo

when (event_type = XC_CONSOLE_INPUT) then

/2 */
/* Leave the Wait_on_Event Tloop. */
S S S S S SR */
leave
otherwise
do
say

say '* ERROR: Wait_on_Event reported event_ type',
xc_event_type.event_type

end
end /* select */
J e m e e e e e e eeee */
/* When notice of partner's deallocation is received, leave the */
/* Wait_on_Event loop. */
2y */

if (return_code = CM_DEALLOCATED_NORMAL) |,
(status_received = CM_CONFIRM DEALLOC RECEIVED) then
Teave
end /* do forever */

GetQut:

call TerminateRes

exit
N e Subroutings ===--=--m-mmmmmm oo */
AcceptConv:
Ty */
/* Accept the incoming conversation. */
/* Store the conversation identifier in save_con_ID. */
[ H e m e e e e e e */

'CMACCP conversation_ID return_code'

save_con_ID = conversation_ID

say; say 'Routine called: CMACCP'

if (return_code == CM_OK) then call ErrorHandler 'CMACCP'
call TraceParms

Ty */
/* Extract conversation_type to ensure the conversation is mapped. =/
e */

'CMECT conversation_ID conversation_type return_code'
say; say 'Routine called: CMECT'

if (return_code == CM_OK) then call ErrorHandler 'CMECT'
call TraceParms

2y */
/* If the conversation is basic, deallocate abnormally. */
ey */
if (conversation_type = CM_BASIC_CONVERSATION) then
do
say; say '* ERROR: Accepting and deallocating a basic',
'conversation'
gy */
/* Call Send_Error to notify partner that error was detected. =/
/* Since the program is going to exit, do not check the */

Chapter 4. VM Extensions to CPl Communications 211



VM Extension Calls

212

/* Send_Error results for an error. */

gy */

'CMSERR conversation_ID request to send received return_code'

say; say 'Routine called: CMSERR'

if (return_code = CM_OK) then

call TraceParms
call AbnormalEnd
signal GetOut
end
e */
/* Extract the access security user ID for the conversation. */
[ m e e */
'XCECSU conversation_ID security_user_ID security_user_ID_length',
'return_code'
say; say 'Routine called: XCECSU'
if (return_code == CM_OK) then call ErrorHandler 'XCECSU'
call TraceParms 'security user ID'
return
Receivelnfo:
ey */
/* Start a Receive Tloop. */
/* Receive data, status, or both from conversation partner. */
[ m e e */
requested_length = event_info_length
do until (data_received = CM_COMPLETE_DATA_RECEIVED) |,
(data_received = CM_NO_DATA_RECEIVED)

'CMRCV conversation_ID receive_buffer requested_length',
'data_received received length status received',
'request_to_send_received return_code’

CMRCV_return_code = return_code

say; say 'Routine called: CMRCV'

select

when (CMRCV_return_code = CM OK) then
do
call TraceParms 'data received status_received'
if (data_received -= CM_NO_DATA _RECEIVED) then
do
receive_buffer = left(receive_buffer,received_Tength)
requested file = requested file || receive buffer
end
Ty */
/* Determine whether a confirmation request has been */
/* received. If so, respond with a positive reply. */
2y */
if (status_received = CM_CONFIRM RECEIVED) |,
(status_received = CM_CONFIRM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM DEALLOC RECEIVED) then
do
S S S S S S S Sy Sy Sy */
/* Issue Confirmed to reply to the partner. */
L */

if

el

'"CMCFMD conversation_ID return_code'
say; say 'Routine called: CMCFMD'
if (return_code -= CM _OK) then call ErrorHandler 'CMCFMD'
call TraceParms
end
(status_received = CM_SEND_RECEIVED) |,
(status_received = CM_CONFIRM_SEND_RECEIVED) then
call SendFile
se
if (status_received = CM_CONFIRM DEALLOC_RECEIVED) then
do
say; say 'Conversation deallocated by partner'
requested_file = '!

z/NM: CPI Communications User's Guide



VM Extension Calls

end
end
when (CMRCV_return_code = CM DEALLOCATED NORMAL) then
do

call TraceParms 'data_received status_received'
say; say 'Conversation deallocated by partner!'
requested_file = "'

end
otherwise
call ErrorHandler 'CMRCV'
end

end
return
SendFile:
Ty */
/* Read the contents of the requested file and send each Tine of */
/* the file to the partner program. */
L PRt */

address command 'EXECIO * DISKR' requested _file '(FINIS STEM LINE.'
do index = 1 to line.0
if (index = 1ine.0) then

2y */
/* Reset the send_type conversation characteristic just */
/* before the final Send Data call. */
Ly Pt */
do

send_type = CM_SEND_AND_PREP_TO_RECEIVE
'CMSST conversation ID send type return_code'
say; say 'Routine called: CMSST'
if (return_code —= CM_OK) then call ErrorHandler 'CMSST'
call TraceParms
end
buffer = line.index
send_length = Tength(buffer)
'CMSEND conversation _ID buffer send Tength',
'request_to_send_received return_code'
say; say 'Routine called: CMSEND'
if (return_code -= CM_OK) then call ErrorHandler 'CMSEND'
call TraceParms

end

return

TraceParms:
gy */
/* Display parameters and their values as passed to this subroutine.*/
Ty */

parse arg parmlist
do word_num = 1 to words(parmlist)
parameter = word(parmlist,word_num)
select
when (parameter = 'return_code') then
say ' return_code is' cm return_code.return_code
when (parameter = 'buffer') then
say ' buffer is' Teft(buffer,send_length)
when (parameter = 'receive_buffer') then
say ' buffer is' lTeft(receive buffer,received _length)
when (parameter = 'data_received') then
say ' data_received is' cm_data_received.data_received
when (parameter = 'status received') then
say ' status_received is' cm_status_received.status_received
when (parameter = 'request_to_send_received') then
say ' request_to_send_received is',

Chapter 4. VM Extensions to CPI Communications 213



VM Extension Calls

cm_request_to_send_received.request_to_send_received
when (parameter = 'send_type') then
say ' send type is' cm_send type.send_type
when (parameter = 'deallocate_type') then
say ' deallocate_type is' cm_deallocate_type.deallocate_type
when (parameter = 'conversation_type') then
say ' conversation_type is',
cm_conversation_type.conversation_type
when (parameter = 'resource_manager_type') then
say ' vresource_manager_type is',
XC_resource_manager_type.resource_manager_type
when (parameter = 'service_mode') then
say ' service_mode is' xc_service_mode.service_mode
when (parameter = 'security level flag') then
say ' security Tevel flag is',
xc_security level flag.security _level _flag
when (parameter = 'event type') then

say event_type is' xc_event_type.event_type
otherwise
say ' ' parameter 'is' value(parameter)
end

end
/2y */
/* Extract the current conversation state of the local program. */
ey */

/* Commenting out next four lines ...
'"CMECS conversation_ID conversation_state return_code'
if (return_code = CM_OK) then

say conversation_state is =>',
cm_conversation_state.conversation_state

Y
return
Error:
2y */
/* Report error when REXX special variable RC is not 0. */
e */
say
say '* ERROR: REXX has detected an error'
say ' The return code variable RC was set to' rc

call AbnormalEnd
signal GetOut

ErrorHandler:

2 */
/* Report routine that failed and the error return code. */
e */
parse arg routine_name

say

say '* ERROR: An error occurred during a' routine_name 'call'

say ' The return_code was set to' cm_return_code.return_code

call AbnormalEnd
signal GetOut

AbnormalEnd:

e */
/* Abnormally deallocate the conversation. Since we are exiting x/
/* due to an error, we will not display an error message if the x/
/* Set_Deallocate_Type or Deallocate call encounters an error. */
/* Use conversation ID in save con_ID, from start of conversation. =*/
ey */

deallocate_type = CM_DEALLOCATE_ABEND
conversation_ID = save_con_ID

214  z/vM: CPI Communications Users Guide



VM Extension Calls

'CMSDT conversation_ID deallocate_type return_code'
say; say 'Routine called: CMSDT'
if (return_code = CM_OK) then
do
call TraceParms
'CMDEAL conversation_ID return_code'
say; say 'Routine called: CMDEAL'
if (return_code = CM_OK) then
call TraceParms

end
return
TerminateRes:
gy */
/* TerminateRes will terminate ownership of the specified resource. */
/* Use resource name stored in save_res_ID at start of program. */
[ m e e e e e */

resource_ID = save_res_ID

'XCTRRM resource_ID return_code'
say; say 'Routine called: XCTRRM'
if (return_code -= CM_OK) then

do
say
say '* ERROR: An error occurred during an XCTRRM call'
say ' The return_code was set to',
cm_return_code.return_code
end
else

call TraceParms

return

Conclusion

In this chapter we expanded our use of CPI Communications routines to include the
VM extensions, we learned about intermediate servers and we successfully
changed security information for the conversation.

As we pointed out in the introduction, this book is intended to be merely an
introduction to SAA CPlI Communications on VM and to the VM extensions to CPI
Communications. There is still more for you to learn. The [Common Programming|

Interface Communications Referenced and the [z/VM: CMS Application Development]

Guidg contain additional sample programs and more information on using CPI
Communications. In addition, the [z/VM: Connectivity| book contains information that
can help you set up your virtual machine to manage system resources,
communicate with resources, and communicate with other programs through a
TSAF collection or an SNA network.

Chapter 4. VM Extensions to CPI Communications 215



216 z/vM: CPI Communications Users Guide



Appendix A. Event Management for CPl Communications

The Wait_on_Event (XCWOE) call is provided by z/VM to allow an application to
receive notification of various communications events. We introduced this call
earlier in our example programs.

It is important to understand that Wait_on_Event causes an entire virtual machine to
be blocked until the call completes. So, a better choice for multitasking applications
is to use CMS event management services. These services allow an application to
wait for events while blocking just a single thread. Hence, other threads can
continue to perform work while there is a wait outstanding.

The occurrences of CPI Communications events are represented by a system event
called VMCPIC. By reporting information through this event, CPI Communications
allows an application to use all the facilities of event management services to
monitor and respond to these conditions, with the additional benefit of avoiding
undue serialization in multitasking applications.

The following types of events are reported by the VMCPIC system event:
» Allocation requests

* Information input from partner

* Resource revoked noatification.

Note: When using the VMCPIC event to monitor allocation requests or information
input, these events are reported only once, whereas Wait_on_Event reports
these events continuously until the appropriate action is taken.

Console input and user events also can be handled through the use of event
management services. CMS provides a system event, called VMCONINPUT, that
allows an application to monitor console input events. Additionally, an application
can use the event management functions to generate and process its own user
events.

The VMCPIC System Event

When a VMCPIC system event is signalled, data comparable to the information
provided by the Wait_on_Event call is associated with the signal. A portion of this
event data composes the event key.

The following list contains a description of the event data available when a VMCPIC
event is signalled:

» Allocation requests:

The event data associated with a signal for an allocation request consists of
X'00000001' concatenated with the resource_ID:

X'00000001" resource_ID

4 bytes 8 bytes
* Information input:

The event data associated with a signal for information input consists of
X'00000002' concatenated with the conversation_ID concatenated with the
event_info_length:

© Copyright IBM Corp. 1991, 2009 217



X'00000002" conversation_ID event_info_length

4 bytes 8 bytes 4 bytes

Note: The event_info_length may be greater than the actual data sent by your
remote partner. This information is part of the mapped conversation data
record built and sent by CPlI Communications at your remote partner.

* Resource revoked noatification:

The event data associated with a signal for a resource revoked notification also
consists of X'00000003' concatenated with the resource_ID:

X'00000003" resource_ID

4 bytes 8 bytes

For example, let’s take a look at the event data that would be associated with an
information input event type. If our communications partner on conversation ID
00000000 sent us the data string “Begin transaction” on a mapped conversation,
the VMCPIC event signal would have associated with it the following hexadecimal
representation of the event data:

X'00000002FOFOFOFOFOFOFOF000000015

The first 4 bytes of the event data indicate that the event_typeis 2, or
XC_INFORMATION_INPUT as we refer to it in this book. The next 8 bytes hold the
conversation_ID of 00000000. And, the final 4 bytes inform us of the length of
information that is available for receipt.

Managing Events

218

CMS declares the event services external functions, constants, and return and
reason codes in a series of programming language binding files. The APILOAD
command is provided for processing these files in a REXX application.

Including VMREXMT provides us with all of the REXX binding files. (Note that it is
possible to be more selective as to which files get included, but the safe way when
starting out is to include all of them.)

The following lines of code will accomplish this task:

== === —— ... */
/* Process REXX binding files. */
2y */

"APILOAD (VMREXMT)'

The approach to waiting on events involves first creating an event monitor through
the EventMonitorCreate function. This tells event management services which event
your program is interested in and if you want to be notified only of those events of a
certain type.

To monitor CPI Communications events, we will need to create an event monitor for
the VMCPIC system event. And, to be able to handle console input, we will also
want to monitor the VMCONINPUT system event.

Here is an example illustrating one way to do it:

z/NM: CPI Communications User's Guide



/* Create an event monitor for the VMCPIC event, specifying a */
/* wildcard key of 'x' so all VMCPIC events will match. Also */
/* monitor the VMCONINPUT event to trap console input. */
Ty S S Sy Sy S S Sy S Sy Sy S S S Sy S —— */
/* Indicate monitor should persist until EventMonitorDeleted or */
/*  the process is terminated. */

monitor_flag.l = vm_evn_no_auto_delete

/* Indicate all threads in the process containing the monitor */
/* remain dispatchable. */
monitor flag.2 = vm_evn_async_monitor

/* Indicate any loose signals should be bound to the monitor. */
monitor_flag.3 = vm_evn_bind_Toose_signals

monitor_flag size = 3 /* Monitor_flag composed of 3 elements */
number_of events = 2 /* Monitor 2 events: VMCPIC, VMCONINPUT x/
/* Specify the names of the events to monitor. */

event_name_address.l = 'VMCPIC'
event_name_address.2 = 'VMCONINPUT'

event_name_length.1 = Tength(event_name_address.1)
event_name_length.2 = length(event name_address.2)

/* Use a wildcard key of 'x' to match any occurrence. */
event_key address.l = 'x'; event_key length.l =1
event_key address.2 = 'x'; event_key length.2 =1

/* AlTow the Tist of bound signals to grow without Timit. */
bound_signal_Timit.1 = -1; bound_signal_limit.2 = -1

/* The monitored condition is satisfied if one of the event list */
/* entries is signalled. */
event_count =1

call CSL 'EventMonitorCreate retcode reascode monitor_token',
'monitor_flag monitor_flag_size number_of_events',
'event_name_address event_name_length event_key address',
'event_key_length bound_signal_limit event_count'

Next, we issue EventWait to actually enter a wait for the occurrence of either the
VMCPIC or the VMCONINPUT event. Typically, the call to EventWait is placed
inside a loop, and an application that is waiting for an event would generally want to
keep its end of a conversation in Receive state.

Here is an example of the EventWait call:

/* Issue EventWait to wait for the next event to occur. */
2y */

call CSL 'EventWait retcode reascode monitor token',
"number_of_events event_flag'

If the EventWait completes due to the signalling of a VMCPIC event, we will want to
call EventRetrieve to obtain the associated event data to determine which
event_type occurred. For example, upon learning that a VMCPIC information input
event has been signalled, we will want to receive the information our
communications partner sent.

Appendix A. Event Management for CPl Communications 219



When EventWait completes because the VMCONINPUT event was signalled, we
will need to read a line from the terminal input buffer.

Remember, if we create a monitor for more than one event, it is possible for an
EventWait call to complete with an indication that several of the events have been
signalled.

We might use a code fragment like the following one:

/* An event has occurred, so get the data describing the event. x/
2y */
/* Check each of the events we are monitoring. */

do index = 1 to event_flag.0

/* Check if this event has been signalled. */
if event_flag.index >= 0 then
do
if event_name_address.index = 'VMCONINPUT' then
do
/* Handle console input. */

parse pull console_input
say; say "Entered at the console was: '"console_input"'"
end

if event_name_address.index = 'VMCPIC' then
do
/* Handle a CPI Communications event. */
data_buffer_length = 16 /* Max length for VMCPIC event =*/

call CSL 'EventRetrieve retcode reascode monitor_token',
"index data_buffer data_buffer length',
'event_data_length'

/* The first four bytes of VMCPIC event data hold the */
/% event_type. */
parse var data_buffer 1 event_type +4

/* Convert the event type to decimal. */
event_type = c2d(event_type)

/* Determine which message format the VMCPIC event has.  */
if event_type = xc_information_input then
do
/* Handle an information input event. Format is: x/
/* event_type||conversation ID||event_info_length */
parse var data_buffer 5 conversation_ID +8,
event_info_length

/* Convert the event_info_length to decimal. */
event_info_length = c2d(event_info_length)

end

else
do
/* Handle an allocation request or resource revoked */
/* notification event. Format is: */
/* event_type||resource ID */

parse var data_buffer 5 resource_ID +8

end

220 z/VM: CPI Communications Users Guide



end
end

end.
After processing an event, the application would typically loop back to wait for the
next event.

A complete description of event management services can be found in the
|CMS Application Multitasking book.

Appendix A. Event Management for CPlI Communications 221



222  z/VM: CPI Communications Users Guide



Appendix B. CPI Communications Conversation States

A CPI Communications conversation can be in one of the following states:

Table 6. CPlI Communications Conversation States

State

Description

Reset
Initialize

Send
Receive
Send-Pending

Confirm

Confirm-Send

Confirm-Deallocate

There is no conversation for this conversation_ID.
Initialize_Conversation has completed successfully and a
conversation_ID has been assigned for this conversation.

The program is able to send data on this conversation.

The program is able to receive data on this conversation.

The program has received both data and send control on the same
Receive call.

A confirmation request has been received on this conversation; that
is, the remote program issued a Confirm call and is waiting for the
local program to issue Confirmed. After responding with Confirmed,
the local program’s end of the conversation returns to Receive state.
A confirmation request and send control have both been received on
this conversation; that is, the remote program issued a
Prepare_To_Receive call with the prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and the sync_level for this
conversation is CM_CONFIRM. After responding with Confirmed, the
local program’s end of the conversation enters Send state.

A confirmation request and deallocation notification have both been
received on this conversation; that is, the remote program issued a
Deallocate call with the deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and the sync_level for this
conversation is CM_CONFIRM. After the local program responds
with Confirmed, the conversation is deallocated.

Additional CPlI Communications States

In addition to the conversation states described above, the following states are
required when a program uses a protected CPlI Communications conversation (that
is, with the sync_level characteristic set to CM_SYNC_POINT):

Table 7. Additional Conversation States for Protected Conversations

State

Description

Defer-Receive

The local program will enter Receive state after a sync point
operation completes successfully; that is, the local program
has issued a Prepare_to_Receive call with
prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set
to CM_SYNC_POINT, or it issued a Send_Data call with
send_type set to SEND_AND_PREP_TO_RECEIVE,
prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, and sync_level
set to CM_SYNC_POINT. The conversation will not enter
Receive state until a successful sync point operation, Flush,
or Confirm takes place.

© Copyright IBM Corp. 1991, 2009

223



224

Table 7. Additional Conversation States for Protected Conversations (continued)

State

Description

Defer-Deallocate

Sync-Point

Sync-Point-Send

Sync-Point-Deallocate

The local program has requested to deallocate the
conversation after a sync point operation has completed; that
is, it issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT, or it issued a Send_Data call with
send_type set to SEND_AND_DEALLOCATE,
deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL,
and sync_level set to CM_SYNC_POINT. The conversation
will not be deallocated until a successful sync point operation
takes place.

The local program issued a Receive call and was given a
return_code of CM_OK and a status_received of
CM_TAKE_COMMIT. After a successful sync point operation,
the conversation will return to Receive state.

The local program issued a Receive call and was given a
return_code of CM_OK and a status_received of
CM_TAKE_COMMIT_SEND. After a successful sync point
operation, the conversation will be placed in Send state.
The local program issued a Receive call and was given a
return_code of CM_OK and a status_received of
CM_TAKE_COMMIT_DEALLOCATE. After a successful sync
point operation, the conversation will be deallocated and
placed in Reset state.

z/NM: CPI Communications User's Guide



Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in all
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or setrvice.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, New York 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1991, 2009 225



226

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, New York 12601-5400
U.S.A.

Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

z/NM: CPI Communications User's Guide



Programming Interface Information

This book is intended to help the customer develop communications programs in
VM using the Communications element of the Systems Application Architecture
(SAA) Common Programming Interface (CPI) and the VM extensions to the SAA
CPI Communications interface. This book documents General-Use Programming
Interface and Associated Guidance Information provided by the CMS component of
z/VM.

General-use programming interfaces allow the customer to write programs that
obtain the services of z/VM.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” atlwww.ibm.com/legal/copytrade.shtmi|

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated
in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, and/or other
countries, or both.

Notices 227


http://www.ibm.com/legal/copytrade.shtml

228 z/VM: CPI Communications Users Guide



Glossary

For a list of z/VM terms and their definitions, see|z/VM: Glossary.

The z/VM glossary is also available through the online z/VM HELP Facility. For
example, to display the definition of the term “dedicated device”, issue the following
HELP command:

help glossary dedicated device

While you are in the glossary help file, you can do additional searches:

» To display the definition of a new term, type a new HELP command on the
command line:
help glossary newterm
This command opens a new help file inside the previous help file. You can repeat
this process many times. The status area in the lower right corner of the screen
shows how many help files you have open. To close the current file, press the
Quit key (PF3/F3). To exit from the HELP Facility, press the Return key (PF4/F4).
» To search for a word, phrase, or character string, type it on the command line
and press the Clocate key (PF5/F5). To find other occurrences, press the key
multiple times.
The Clocate function searches from the current location to the end of the file. It
does not wrap. To search the whole file, press the Top key (PF2/F2) to go to the
top of the file before using Clocate.

© Copyright IBM Corp. 1991, 2009 229



230 z/VM: CPI Communications Users Guide



Bibliography

See the following publications for additional
information about z/VM. For abstracts of the z/VM
publications, see [z/VM: General Information.

Where to Get z/VM Information

z/VVM product information is available from the
following sources:

» z/VM Information Center at

publib.boulder.ibm.com/infocenter/zvm/véri/|

index.jsp|

« z/VM Internet Library atwww.ibm.com/eserver]
[zseries/zvm/library/|

¢ |IBM Publications Center at
www.elink.ibmlink.ibm.com/publications/servlet/
9bi.wss|

» IBM Online Library: z/VM Collection on DVD,
SK5T-7054

z/VM Base Library

Overview
* [z/VM: General Informatior}, GC24-6193

* |z/VM: Glossary, GC24-6195
« [z/VM: License Information, GC24-6200

Installation, Migration, and
Service

* [z/VM: Guide for Automated Installation and
Service} GC24-6197

* [z2VM: Migration Guide, GC24-6201
* [z/VM: Service Guidd, GC24-6232

* [z/VM: VMSES/E Introduction and Reference,
GC24-6243

Planning and Administration

* |zZ/VM: CMS File Pool Planning, Administration,|
and Operatior], SC24-6167

* |z/VM: CMS Planning and Administration

SC24-6171

* |zVM: Connectivity} SC24-6174

* |zZVM: CP Planning and Administration}
SC24-6178

[z/VM: Getting Started with Linux on System 3,
SC24-6194

[z/VM: Group Control System, SC24-6196

© Copyright IBM Corp. 1991, 2009

* |z/VM: I/O Configuration, SC24-6198

« |z/VM: Running Guest Operating Systemd,
SC24-6228

* |1z/VM: Saved Segments Planning an
lAdministration, SC24-6229
» |z2/VM: Secure Configuration Guide, SC24-6230

* |[z/VM: TCP/IP LDAP Administration Guide
SC24-6236

« |z/VM: TCP/IP Planning and Customization,
SC24-6238

* 1z/0OS and z/VM: Hardware Configuratio
Manager User’s Guide} SC33-7989
Customization and Tuning

* |z/VM: CP Exit Customization, SC24-6176
* |z/VM: Performance, SC24-6208

Operation and Use

* |zZVM: CMS Commands and Utilities Reference,
SC24-6166

[z7VM: CMS Pipelines Referencd, SC24-6169
[z7VM: CMS Pipelines User’s Guidd, SC24-6170
[z2VM: CMS Primer, SC24-6172

[z/VM: CMS User’s Guidg, SC24-6173

[z7VM: CP Commands and Utilities Reference,
SC24-6175

* |z/VM: System Operatior}, SC24-6233

[z/vM: TCP/IP User’s Guidg, SC24-6240
[z/VM: Virtual Machine Operation, SC24-6241
* |zZVM: XEDIT Commands and Macrod

Fhe*ferencér SC24-6244

[z/VM: XEDIT User’s Guide} SC24-6245

[CMS/TSO Pipelines: Author’s Edition,
SL26-0018

Application Programming

« |zVM: CMS Application Development Guide
SC24-6162

« |z/VM: CMS Application Development Guide for|

Assembled, SC24-6163

* [z/VM: CMS Application Multitasking{ SC24-6164

* |z/VM: CMS Callable Services Reference,
SC24-6165

[z/VM: CMS Macros and Functions Reference
SC24-6168

231


http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.ibm.com/eserver/zseries/zvm/library/
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

[z/VM: CP Programming Services| SC24-6179

[z/VM: CPI Communications User’s Guide,
SC24-6180

* [z/VM: Enterprise Systems Architecture/]
Extended Configuration Principles of Operation|
SC24-6192

* |z/VM: Language Environment User’s Guide,
SC24-6199

* |z/VM: OpenExtensions Advanced Applicationl
Programming Toold, SC24-6202

» [z2vM: OpenExtensions Callable Serviceq
Reference| SC24-6203

» |z/VM: OpenExtensions Commands Reference,
SC24-6204

« [z/VM: OpenExtensions POSIX Conformance

Documenj, GC24-6205

+ [z/VM: OpenExtensions User’s Guide
SC24-6206

* [z/VM: Program Management Binder for CMS)|
SC24-6211

+ [z/VM: Reusable Server Kernel Programmer’q
Guide and Referencd, SC24-6220

* [z/VM: REXX/VM Reference} SC24-6221
 [zVM: REXX/VM User’s Guide, SC24-6222
+ [z/VM: Systems Management Application|

Programmin_d, SC24-6234
* |z/VM: TCP/IP Programmer’s Reference,
SC24-6239

+ [Common Programming Interfaced
Communications Referencd, SC26-4399

« [Common Programming Interface Resourceg
Recovery Reference, SC31-6821

« (z/0S: IBM Tivoli Directory Server Plug-ir}
Reference for z/OS, SA76-0148

« [2/0S: Language Environment Concepts Guide,
SA22-7567

« [2/0S: Language Environment Debugging|
Guidg, GA22-7560

* |2/0S: Language Environment Programming
Guidg, SA22-7561

« |z/0S: Language Environment Programming|
Referencel SA22-7562

* |z/0S: Language Environment Run-TimeI
Messages, SA22-7566

» |Z/0S: Language Environment Writing IL
Applications, SA22-7563

* |2/0S MVS Program Management: Advanced|

Facilities, SA22-7644

« [0S MVS Program Management: User’s Guidd

and Referencé, SA22-7643

232 z/VM: CPI Communications Users Guide

Diagnosis

* |z/VM: CMS and REXX/VM Messages and|
Codes| GC24-6161

* |z/VM: CP Messages and Codes, GC24-6177
« [zVM: Diagnosis Guidd, GC24-6187

. [vm: Dump Viewing Facility, GC24-6191

* |1z/VM: Other Components Messages an
Codes, GC24-6207
* |z/VM: TCP/IP Diagnosis Guide] GC24-6235

* |[z/VM: TCP/IP Messages and Coded,
GC24-6237

* |[z2VM: VM Dump Tool, GC24-6242
* 1z/0S and z/VM: Hardware Configuratio
Definition Messaged, SC33-7986

z/VM Facilities and Features

Data Facility Storage
Management Subsystem for VM
* |z/VM: DFSMS/VM Customizatior} SC24-6181

+ |z/VM: DFSMS/VM Diagnosis Guidg,
GC24-6182

* |z/VM: DFSMS/VM Messages and Codes,
GC24-6183

* |z/VM: DFSMS/VM Planning Guidd, SC24-6184

[z/VM: DFSMS/VM Removable Media Services,
SC24-6185

* |zZVM: DFSMS/VM Storage Administration),
SC24-6186

Directory Maintenance Facility for
z/VM

* |z/VM: Directory Maintenance Facility|
Commands Reference, SC24-6188

* |z/VM: Directory Maintenance Facility Messages,
GC24-6189

* [z/VM: Directory Maintenance Facility Tai/orind
and Administration Guide] SC24-6190

Open Systems Adapter/Support
Facility
» |System z10, System z9 and eServer zSeries

Open Systems Adapter-Express Customer’
Guide and Referencel SA22-7935

« |System z9 and eServer zSeries 890 and 990]
Open Systems Adapter-Express Integrated
Console Controller User’s Guide] SA22-7990




« [System z: Open Systems Adapter-Expresd
Integrated Console Controller 3215 Support,
SA23-2247

Performance Toolkit for VM
+ |z/VM: Performance Toolkit Guidd, SC24-6209

* |z/VM: Performance Toolkit Referenc,
SC24-6210

RACF® Security Server for z/VM

» |z/VM: RACF Security Server Auditor’s Guide,
SC24-6212

* |zZVM: RACF Security Server Comman
Language Reference, SC24-6213

« [z2vM: RACF Security Server Diagnosis Guidd,

GC24-6214

« [z/VM: RACF Security Server General User’s|
Guidgl, SC24-6215

* [z/VM: RACF Security Server Macros and

Interfaceg, SC24-6216

« [z/VM: RACF Security Server Messages and|
Codej, GC24-6217

* |z/VM: RACF Security Server Security|
Administrator’s Guidg, SC24-6218

* [z/VM: RACF Security Server System|
Programmer’s Guideg, SC24-6219

« (z/VM: Security Server RACROUTE Macrd

Fi’eferencg, SC24-6231

Remote Spooling
Communications Subsystem
Networking for z/VM

« [z2VM: RSCS Networking Diagnosid, GC24-6223

[z/ZVM: RSCS Networking Exit Customization|
SC24-6224

[z7VM: RSCS Networking Messages and Codes,

GC24-6225

[z/VM: RSCS Networking Operation and Usg,
SC24-6226

* [zZVM: RSCS Networking Planning an
Configuration, SC24-6227

« [Network Job Entry: Formats and Protocols}
SA22-7539

Prerequisite Products

Device Support Facilities
« |Device Support Facilities: User’s Guide and|

Referencd, GC35-0033

Environmental Record Editing
and Printing Program

« |Environmental Record Editing and Printing|
Program (EREP): Referencd, GC35-0152

» |Environmental Record Editing and Printin
Program (EREP): User’s Guide} GC35-0151

Bibliography

233



234  z/VM: CPI Communications Users Guide



Index

Special characters
$SERVER$ NAMES file 31, 168

A

accept incoming conversation request 33
Accept_Conversation (CMACCP)
call description 33
example flow using 60
in sample server program 34
access security information
setting and extracting 131
ADDRESS CPICOMM 10
advanced function calls
description 6
list 63
sample program pseudocode 64
Advanced Program-to-Program Communications
(APPC)
See also LU 6.2 and CPl Communications
interface for 1
type 6.2 logical unit 131
Allocate (CMALLC)
call description 17
example flow using 60
in sample requester program 18
allocation request 217
alter conversation characteristics
See set calls
alternate user ID
setting 2, 183, 191
APILOAD command 218
APPC
See Advanced Program-to-Program Communications
(APPC)
APPCPASS statement 158

basic conversation 6, 109
binding file 218
buffer
description 18, 70
example flow 60

C

calls
advanced function 63
format 11
naming conventions 2
starter set 6, 9
VM extensions 132
change conversation characteristics
See set calls
change conversation state
from Send to Receive 70

© Copyright IBM Corp. 1991, 2009

change data flow direct

ion

by receiving program 113, 119

by sending program
characteristic of
CMS files 49

41, 46

conversation_ID 12, 34

conversation_state
extract 65
possible values
conversation_type
extract 105
possible values
set 109
deallocate_type
possible values
set 98
default values 11
error_direction 120
fill 120
integer values 3
log_data 120
mode_name
extract 119
set 120
modifying 63
naming conventions
overview 11
partner_LU_name

66

6

98

3

119

prepare_to_receive_type 88

pseudonyms 3
receive_type 121
return_control 121
send_type 93
sync_level
extract 119
possible values
set 74
TP_name 116
viewing 64, 132
class B privilege

75

issuing DIAGNOSE code X'D4'

setting alternate use
client program 167

riD 2

CMACCP (Accept_Conversation)

call description 33
example flow using

60

in sample server program 34

CMALLC (Allocate)
call description 17
example flow using
in sample requester

CMCFM (Confirm)
call description 80
in sample programs

CMCFMD (Confirmed)
call description 81
in sample programs

60

program 18

82

82

235



CMDEAL (Deallocate) CMSTPN (Set_TP_Name)

call description 50 call description 116
example flow using 60 in sample requester program 117
in sample requester program 50 CMTRTS (Test_Request_To_Send_Received) 122
CMECS (Extract_Conversation_State) Common Programming Interface (CPl) Communications
call description 65 introduction 1
in sample programs 66 naming conventions 2
CMECT (Extract_Conversation_Type) communications directory
call description 105 CMS NAMES file 25
in sample server program 106 description 11, 25
CMEMN (Extract_Mode_Name) 119 SCOMDIR file 25
CMEPLN (Extract_Partner_LU_Name) 119 SET COMDIR Command 27
CMESL (Extract_Sync_Level) 119 UCOMDIR file 25, 32
CMFLUS (Flush) 70 Confirm (CMCFM)
CMINIT (Initialize_Conversation) call description 80
call description 11 in sample programs 82
example flow using 60 Confirm state 223
CMPTR (Prepare_To_Receive) Confirm-Deallocate state 223
call description 70 Confirm-Send state 79, 223
in sample requester program 71 confirmation processing
CMRCYV (Receive) Confirm call 80
call description 36 Confirmed call 81
example flow using 60 general discussion 77
loop in sample requester program 41 Confirmed (CMCFMD)
loop in sample server program 38, 46 call description 81
CMREXX COPY file 15 in sample programs 82
CMRTS (Request_To_Send) 119 conventions in this book 2
CMS multitasking conversation
using event management services 217 accept 33
CMSCT (Set_Conversation_Type) allocate 17
call description 109 basic 6
in sample requester program 110 characteristics 11
CMSDT (Set_Deallocate_Type) deallocate 50
call description 98 description 4
in sample programs 99 initialize 11
CMSED (Set_Error_Direction) 120 mapped 6
CMSEND (Send_Data) multiple 131
call description 20 security 156
example flow using 60 states 78, 223
in sample requester program 23 synchronization and control
loop in sample server program 46 Confirm call 80
CMSERR (Send_Etrror) Confirmed call 81
call description 107 Flush call 70
in sample server program 108 list of calls 63
CMSF (Set_Fill) 64, 120 Prepare_To_Receive call 70
CMSLD (Set_Log_Data) 64, 120 Request_To_Send call 119
CMSMN (Set_Mode_Name) 120 Send_Error call 107
CMSPLN (Set_Partner_LU_Name) Test_Request_To_Send_Received call 122
call description 113 transition from a state 78
in sample requester program 114 types 6
CMSPTR (Set_Prepare_To_Receive_Type conversation_type characteristic
call description 88 extract 105
in sample requester program 89 possible values 109
CMSRC (Set_Return_Control) 121 set 109
CMSRT (Set_Receive_Type) 121 copy file
CMSSL (Set_Sync_Level) CMREXX 15
call description 74 CPI Communications
in sample requester program 75 See Common Programming Interface (CPI)
CMSST (Set_Send_Type) Communications
call description 93 CPICOMM LOGDATA file 12
in sample server program 94 create $SERVER$ NAMES file 31

236 z/VM: CPI Communications Users Guide



D

data
buffering 41, 70
direction, changing
by receiving program 113, 119
by sending program 41, 46
purging 113
transmission 41, 70
data record
description 20, 41
Receive call 36
Send_Data call 20
Deallocate (CMDEAL)
call description 50
example flow using 60
in sample requester program 50
deallocate_type characteristic
possible values 98
set 98
declare
resource to manage 135
detect error
using Send_Error (CMSERR) call 107
DIAGNOSE code X'D4' 183, 191

E

end conversation
using Deallocate (CMDEAL) call 50
error
checking 10
detecting 107
reporting 19, 22
error_direction characteristic 120
establish conversation
using Allocate (CMALLC) call 17
event
communications 217
services 217
system 217
event management
using for CPI Communications 217
event management services 217
event notification 143
EventMonitorCreate
use of 218
EventRetrieve
use of 219
EventWait
use of 219
examine
See also extract calls
conversation characteristics 64
EXECIO command 15
extension, VM
calls
conversation security 132, 156, 183
overview 131, 198
resource recovery 132
resources, events 132

extension, VM (continued)

sample program pseudocode 134
extract calls

conversation_security_user_ID 184

conversation_state 65

conversation_type 105

list of

advanced set 64
VM extensions 132

mode_name 119

partner_LU_name 119

sync_level 119
Extract Local Fully Qualified LU Name (XCELFQ) 198
Extract Remote Fully Qualified LU Name

(XCERFQ) 198

Extract_Conversation_LUWID (XCECL) 198
Extract_Conversation_Security_User_ID (XCECSU)

call description 184

in sample intermediate server 184

in sample resource manager program 186
Extract_Conversation_State (CMECS)

call description 65

in sample programs 66
Extract_Conversation_Type (CMECT)

call description 105

in sample server program 106
Extract_Conversation_Workunit_ID (XCECWU) 198
Extract_Mode_Name (CMEMN) 119
Extract_Partner_LU_Name (CMEPLN) 119
Extract_Sync_Level (CMESL) 119
Extract_TP_Name (XCETPN) 198

F

file
binding 218
characteristics 49
fill characteristic 120
flow
conversation 67
diagram 60
Flush (CMFLUS) 70
flush send buffer 70
force a conversation flow using Flush (CMFLUS) 70
format of calls 11
FYI (for your information) boxes
CMS communications directories 25
copy files—the easy way to use pseudonyms 15
Flush (CMFLUS) call overview 70
if SERVR received a product-specific error 193
if you got a product-specific error 19
LEFT function in REXX 23, 39
more REXX considerations 13
receiving partial records 58
REXX considerations 10
security information and the APPCPASS
statement 158
SET COMDIR command 27
side information 11
tidying up 65
tidying up, part Il 88

Index 237



FYI (for your information) boxes (continued)
tidying up, part Il 135
what the Allocate call does 17
when errors are reported 22

G

General-Use programming interfaces 227
global resource
description 133
in communications programming 4
specifying on Identify_Resource_Manager call 136

H

half-duplex protocol 5

Identify_Resource_Manager (XCIDRM)
call description 135
in sample server program 137
incoming conversation request
accepting 33
information input 217
initialize
conversation 11
state 12, 223
Initialize_Conversation (CMINIT)
call description 11
example flow using 60
interface, communications
See Common Programming Interface (CPI)
Communications
intermediate server
converting SERVR virtual machine 170
description 167
sample program pseudocode 167
security considerations 183
interrupt
console
reflecting 143, 217

L

local partner 4
local resource
description 133
in communications programming 4
specifying on Identify_Resource_Manager call 136
logical unit 17
LU
See logical unit
LU 6.2 and CPI Communications 131

M

manage
events 218
manager, resource 133

238 z/VM: CPI Communications Users Guide

mapped conversation 6
mode_name characteristic
extract 119
set 120
modify conversation characteristics
See set calls
modify data flow direction
by receiving program 41, 46
by sending program 113, 119
multiple conversations 131
multitasking, CMS
using event management services 217

N

NAMES command 25, 31
NAMES file 11
naming conventions 2, 11

)

ownership of a resource
terminating 139

P

partner 4
partner_LU_name characteristic
extract 119
set 113
password
access security
setting 162
prepare
SERVR virtual machine 30
Prepare_To_Receive (CMPTR)
call description 70
in sample requester program 71
prepare_to_receive_type characteristic
possible values 89
set 88
private resource
description 134
in communications programming 4
specifying on Identify_Resource_Manager call 135
privilege class B
issuing DIAGNOSE code X'D4' 183, 191
setting alternate user ID 2
Procedures Language REXX/VM
See REstructured eXtended eXecutor/Virtual
Machine (REXX/VM)
PROFILE EXEC
modifying 30
program
partners 4
states, conversation 223
programming interfaces, General-Use 227
pseudonym
copy files 15
example of 15
explanation of 3, 15



pseudonym (continued) return (continued)
values 15 conversation state 65
conversation type 105
local fully-qualified LU name 198

Q logical unit of work ID 198
query mode name 119
See also extract calls partner LU name 119
conversation characteristics 64 remote fully-qualified LU name 198
sync_level value 119
TP name 198
R return codes 3
RC special variable return_control characteristic 121
REXX 10 REXX/VM
Receive (CMRCV) See REstructured eXtended eXecutor/Virtual

call description 36 Machine (REXX/VM)

example flow using 60

loop in sample requester program 41 S
loop in sample server program 38, 46
receive information SAA
using Receive (CMRCV) call 36 See Systems Application Architecture (SAA)
Receive state sample of
description 223 completed execs 199
how a program enters it 41, 79 program pseudocode
receive_type characteristic advanced set 64
possible values 121 intermediate server 167
set 121 starter set 9
record VM extensions 134
format 49 SCOMDIR NAMES file
length 41, 49 See communications directory
partial 58 security
reflect $SERVERS$ NAMES file 31, 183
console interrupts 143, 217 general considerations 156
related publications  xi levels in VM
remote partner 4 SECURITY(NONE) 156
report SECURITY(PROGRAM) 157
errors 19, 22 SECURITY(SAME) 157
report events 217 relating to intermediate servers 183
Request_To_Send (CMRTS) 119 send
requester program 5 confirmation request 80
requester virtual machine 5 send data
Reset state 12, 223 using Send_Data (CMSEND) call 20
resource Send state 223
kinds of Send_Data (CMSEND)
global 4, 133, 136 call description 20
local 4,133, 136 example flow using 60
private 4, 134, 135 in sample requester program 23
system 4, 134, 136 loop in sample server program 46
management 132, 133 Send_Error (CMSERR)
resource revoked notification 218 call description 107
REstructured eXtended eXecutor/Virtual Machine in sample server program 108
(REXX/VM) send_type characteristic
binding files 218 possible values 94
considerations 10, 13 set 93
CPICOMM subcommand environment 10 Send-Pending state 223
functions 13 server program
interpret statement 15 description 4
SIGNAL ON ERROR instruction 10 SERVR’s SENDBACK EXEC 32
special variable RC 10 SERVR2’s SENDSERV EXEC 168
return SERVR virtual machine, converting to intermediate
access security user ID 184 server 170
CMS work unit ID 198 SERVR2 virtual machine, setting up 168

Index 239



session
description 17

set calls
client_security_user_ID 191
conversation_security_password 162
conversation_security_type 158
conversation_security_user_ID 161
conversation_type 109
deallocate_type 98
error_direction 120

fill 120
listing of 63
log_data 120

mode_name 120

partner_LU_name 113

prepare_to_receive_type 88

receive_type 121

return_control 121

send_type 93

sync_level 74

TP_name 116
SET COMDIR Command 27
set up

user IDs 2
Set_Client_Security_User_ID (XCSCUI)

call description 191

in sample intermediate server 192
Set_Conversation_Security_Password (XCSCSP)

call description 162

in sample requester program 163
Set_Conversation_Security_Type (XCSCST)

call description 158

in sample requester program 159
Set_Conversation_Security_User_ID (XCSCSU)

call description 161

in sample requester program 162
Set_Conversation_Type (CMSCT)

call description 109

in sample requester program 110
Set_Deallocate_Type (CMSDT)

call description 98

in sample programs 99
Set_Error_Direction (CMSED) 120
Set_Fill (CMSF) 64, 120
Set_Log_Data (CMSLD) 64, 120
Set_Mode_Name (CMSMN) 120
Set_Partner_LU_Name (CMSPLN)

call description 113

in sample requester program 114
Set_Prepare_To_Receive_Type (CMSPTR)

call description 88

in sample requester program 89
Set_Receive_Type (CMSRT) 121
Set_Return_Control (CMSRC) 121
Set_Send_Type (CMSST)

call description 93

in sample server program 94
Set_Sync_Level (CMSSL)

call description 74

in sample requester program 75

240 z/vM: CPI Communications Users Guide

Set_TP_Name (CMSTPN)
call description 116
in sample requester program 117
side information
general information 11, 25
in VM/ESA 25
Signal_User_Event (XCSUE) 198
SNA
See Systems Network Architecture (SNA)
starter-set calls
description 6
list 9
sample program call table 9
sample program flow 58
state
conversation
description 223
extracting 65
list 223
state table for conversations
abbreviations 79
example of how to use 78
subcommand environment
in REXX 10
symbolic destination name 12
sync_level characteristic
extract 119
possible values 75
set 74
synchronization and control calls
Confirm 80
Confirmed 81
Flush 70
list of 63
Prepare_To_Receive 70
Request_To_Send 119
Send_Error 107
Test_Request_To_Send_Received 122
system resource
description 134
in communications programming 4
specifying on Identify_Resource_Manager call
Systems Application Architecture (SAA)
See also Common Programming Interface (CPI)
Communications
overview 1, 131
Systems Network Architecture (SNA) 131

—~

Terminate_Resource_Manager (XCTRRM)

call description 139

in sample server program 140
Test_Request_To_Send_Received (CMTRTS) 122
TP_name characteristic 116
transition, state 79
Transparent Services Access Facility (TSAF) 19
types of conversations 6



U

UCOMDIR NAMES file

See communications directory
user 1D

settingup 2
user program 5

\'

variables
integer values 3
pseudonyms 3
view conversation characteristics
See extract calls
VM extension
calls
conversation security
overview 131, 198
resource recovery 132
resources, events 132
sample program pseudocode 134
VM/REXX
See REstructured eXtended eXecutor/Virtual
Machine (REXX/VM)
VMCONINPUT system event 217
VMCPIC system event 217

132, 156, 183

W

Wait_on_Event (XCWOE)
call description 143
in sample server program 145

X

XCECL (Extract_Conversation_LUWID) 198
XCECSU (Extract_Conversation_Security_User_ID)
call description 184
in sample intermediate server 184
in sample resource manager program 186
XCECWU (Extract_Conversation_Workunit_ID) 198
XCELFQ (Extract Local Fully Qualified LU Name) 198
XCERFQ (Extract Remote Fully Qualified LU
Name) 198
XCETPN (Extract_TP_Name) 198
XCIDRM (ldentify_Resource_Manager)
call description 135
in sample server program 137
XCSCSP (Set_Conversation_Security_Password)
call description 162
in sample requester program 163
XCSCST (Set_Conversation_Security_Type)
call description 158
in sample requester program 159
XCSCSU (Set_Conversation_Security_User_ID)
call description 161
in sample requester program 162
XCSCUI (Set_Client_Security_User_ID)
call description 191
in sample intermediate server 192

XCSUE (Signal_User_Event) 198
XCTRRM (Terminate_Resource_Manager)

call description 139

in sample server program 140
XCWOE (Wait_on_Event)

call description 143

in sample server program 145

Index

241



242 z/VM: CPI Communications Users Guide






Program Number: 5741-A07

Printed in USA

SC24-6180-00



	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information

	How to Send Your Comments to IBM
	If You Have a Technical Problem

	Chapter 1. Introduction
	A Few Words about Our Format and Programs
	Error Handling
	The Programming Language Used for This Book

	Before You Start
	Setting Up the User IDs

	Conventions Used in This Book
	Pseudonyms
	Visual Cues

	CPI Communications Terms and Concepts for z/VM
	Program Partners, Communications, and Resources
	Like Using a Two-Way Radio
	Type of Conversation to Be Used

	Program Calls
	SAA CPI Communications Calls
	z/VM Extensions to CPI Communications


	Chapter 2. Starter Set CPI Communications Calls
	Calls Used for Starting and Ending Conversations
	Calls Used for Exchanging Data
	Using the Starter Set Calls
	Getting Started
	Step 1. The Initialize_Conversation (CMINIT) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding CMINIT to Our Requester Program

	Step 2. The Allocate (CMALLC) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding CMALLC to Our Requester Program
	Note on a Common Error

	Step 3. The Send_Data (CMSEND) Call
	Input Parameters
	Output Parameters
	Results of the Call
	Adding CMSEND to Our Requester Program

	Preparing the SERVR Virtual Machine
	Modifying the PROFILE EXEC File
	Creating TEST FILE
	Creating the $SERVER$ NAMES File
	Creating the SENDBACK EXEC File

	Step 4. The Accept_Conversation (CMACCP) Call
	Output Parameters
	Results of the Call
	Adding CMACCP to Our Server Program

	Step 5. The Receive (CMRCV) Call
	Input Parameters
	Output Parameters
	Results of the Call
	Adding a Receive (CMRCV) Loop to Our Server Program

	Step 6. Adding a Receive (CMRCV) Loop to Our Requester Program
	Step 7. Adding a Send_Data (CMSEND) Loop to Our Server
	Step 8. The Deallocate (CMDEAL) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding CMDEAL to Our Requester Program


	Summary with Flow Diagram
	A Word about the Flow Diagrams
	Flow Diagram for Starter Set Conversation


	Chapter 3. Advanced CPI Communications Calls
	Overview of Advanced CPI Communications Calls
	Calls Used for Synchronization and Control
	Calls Used for Modifying Conversation Characteristics
	Calls Used for Examining Conversation Characteristics


	Using Advanced Set Calls
	The Extract_Conversation_State (CMECS) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding CMECS to Both Our Programs
	The Flow of a Conversation

	The Prepare_To_Receive (CMPTR) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding CMPTR to Our Requester Program

	The Set_Sync_Level (CMSSL) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSSL to Our Requester Program

	The State Table–Finding Out Where You Can Go from Here

	Confirmation Processing
	The Confirm (CMCFM) Call
	Input Parameter
	Output Parameters
	Results of the Call

	The Confirmed (CMCFMD) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding CMCFM and CMCFMD to Our Programs

	The Set_Prepare_To_Receive_Type (CMSPTR) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSPTR to Our Requester Program

	The Set_Send_Type (CMSST) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSST to Our Server Program

	The Set_Deallocate_Type (CMSDT) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSDT to Both Our Programs

	The Extract_Conversation_Type (CMECT) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding CMECT to Our Server Program

	The Send_Error (CMSERR) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding CMSERR to Our Server Program

	The Set_Conversation_Type (CMSCT) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSCT to Our Requester Program

	The Set_Partner_LU_Name (CMSPLN) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSPLN to Our Requester Program

	The Set_TP_Name (CMSTPN) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding CMSTPN to Our Requester Program


	Overviews of Additional Advanced Calls
	Extract_Mode_Name (CMEMN) Call
	Extract_Partner_LU_Name (CMEPLN) Call
	Extract_Sync_Level (CMESL) Call
	Request_To_Send (CMRTS) Call
	Set_Error_Direction (CMSED) Call
	Set_Fill (CMSF) Call
	Set_Log_Data (CMSLD) Call
	Set_Mode_Name (CMSMN) Call
	Set_Return_Control (CMSRC) Call
	Set_Receive_Type (CMSRT) Call
	Test_Request_To_Send_Received (CMTRTS) Call

	The Modified Sample Execs
	The PROCESS Sample File Requester Exec
	The SENDBACK Sample Server Exec

	Summary

	Chapter 4. VM Extensions to CPI Communications
	The Relationship between VM and SAA CPI Communications
	Overview of VM Extension Calls
	Summary of VM Extension Calls
	Calls Used for Conversation Security
	Calls Used for Resource Management and Event Notification
	Calls Used for Resource Recovery Support
	Call Used for Extracting CMS Work Unit ID


	Managing a Resource
	What Is a Resource Manager?
	What Kinds of Resources Are There?
	Local
	Global
	System
	Private
	Using VM Extension Calls to Manage Resources

	The Identify_Resource_Manager (XCIDRM) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCIDRM to Our Server Program

	The Terminate_Resource_Manager (XCTRRM) Call
	Input Parameter
	Output Parameter
	Results of the Call
	Adding XCTRRM to Our Server Program

	The Wait_on_Event (XCWOE) Call
	Output Parameters
	Results of the Call
	Adding XCWOE to Our Server Program


	Security Considerations
	The Set_Conversation_Security_Type (XCSCST) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCSCST to Our Requester Program

	The Set_Conversation_Security_User_ID (XCSCSU) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCSCSU to Our Requester Program

	The Set_Conversation_Security_Password (XCSCSP) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCSCSP to Our Requester Program


	Intermediate Servers
	Setting Up the SERVR2 Virtual Machine
	Converting the SERVR Virtual Machine into an Intermediate Server

	Security Considerations for Intermediate Servers
	The Extract_Conversation_Security_User_ID (XCECSU) Call
	Input Parameter
	Output Parameters
	Results of the Call
	Adding XCECSU to Our Intermediate Server Program
	Adding XCECSU to Our Resource Manager Program

	The Set_Client_Security_User_ID (XCSCUI) Call
	Input Parameters
	Output Parameter
	Results of the Call
	Adding XCSCUI to Our Intermediate Server Program


	Overview of Additional VM Extension Calls
	Extract_Conversation_LUWID (XCECL) Call
	Extract_Conversation_Workunitid (XCECWU) Call
	Extract_Local_Fully_Qualified_LU_Name (XCELFQ) Call
	Extract_Remote_Fully_Qualified_LU_Name (XCERFQ) Call
	Extract_TP_Name (XCETPN) Call
	Signal_User_Event (XCSUE) Call

	The Completed Sample Execs
	The PROCESS Sample File Requester Exec
	The SENDBACK Sample Intermediate Server Exec
	The SENDSERV Sample Resource Manager Exec

	Conclusion

	Appendix A. Event Management for CPI Communications
	The VMCPIC System Event
	Managing Events

	Appendix B. CPI Communications Conversation States
	Additional CPI Communications States

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	Overview
	Installation, Migration, and Service
	Planning and Administration
	Customization and Tuning
	Operation and Use
	Application Programming
	Diagnosis

	z/VM Facilities and Features
	Data Facility Storage Management Subsystem for VM
	Directory Maintenance Facility for z/VM
	Open Systems Adapter/Support Facility
	Performance Toolkit for VM™
	RACF® Security Server for z/VM
	Remote Spooling Communications Subsystem Networking for z/VM

	Prerequisite Products
	Device Support Facilities
	Environmental Record Editing and Printing Program


	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


